Found problems: 85335
2006 Switzerland Team Selection Test, 1
Let $a,b,c \in \mathbb{R^+}$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$. Show $\sqrt{ab+c} + \sqrt{bc+a} + \sqrt{ca+b} \ge \sqrt{abc} + \sqrt{a} + \sqrt{b} + \sqrt{c}$. :D
2018 Romania National Olympiad, 4
Let $n \in \mathbb{N}^*$ and consider a circle of length $6n$ along with $3n$ points on the circle which divide it into $3n$ arcs: $n$ of them have length $1,$ some other $n$ have length $2$ and the remaining $n$ have length $3.$
Prove that among these points there must be two such that the line that connects them passes through the center of the circle.
2000 Taiwan National Olympiad, 1
Find all pairs $(x,y)$ of positive integers such that $y^{x^2}=x^{y+2}$.
2019 Centroamerican and Caribbean Math Olympiad, 4
Let $ABC$ be a triangle, $\Gamma$ its circumcircle and $l$ the tangent to $\Gamma$ through $A$. The altitudes from $B$ and $C$ are extended and meet $l$ at $D$ and $E$, respectively. The lines $DC$ and $EB$ meet $\Gamma$ again at $P$ and $Q$, respectively. Show that the triangle $APQ$ is isosceles.
2019 LIMIT Category C, Problem 7
The value of
$$\left(1+\frac26+\frac{2\cdot5}{6\cdot12}+\frac{2\cdot5\cdot8}{6\cdot12\cdot18}+\ldots\right)^3$$
1962 Putnam, B6
Let
$$f(x) =\sum_{k=0}^{n} a_{k} \sin kx +b_{k} \cos kx,$$
where $a_k$ and $b_k$ are constants. Show that if $|f(x)| \leq 1$ for $x \in [0, 2 \pi]$ and there exist $0\leq x_1 < x_2 <\ldots < x_{2n} < 2 \pi$ with $|f(x_i )|=1,$ then $f(x)= \cos(nx +a)$ for some constant $a.$
1965 Leningrad Math Olympiad, grade 7
[b]7.1[/b] Prove that a natural number with an odd number of divisors is a perfect square.
[b]7.2[/b] In a triangle $ABC$ with area $S$, medians $AK$ and $BE$ are drawn, intersecting at the point $O$. Find the area of the quadrilateral $CKOE$.
[img]https://cdn.artofproblemsolving.com/attachments/0/f/9cd32bef4f4459dc2f8f736f7cc9ca07e57d05.png[/img]
[b]7.3 .[/b] The front tires of a car wear out after $25,000$ kilometers, and the rear tires after $15,000$ kilometers. When you need to swap tires so that the car can travel the longest possible distance with the same tires?
[b]7.4 [/b] A $24 \times 60$ rectangle is divided by lines parallel to it sides, into unit squares. How many parts will this rectangle be divided into if you also draw a diagonal in it?
[b]7.5 / 8.4[/b] Let $ [A]$ denote the largest integer not greater than $A$. Solve the equation: $[(5 + 6x)/8] = (15x-7)/5$ .
[b]7.6[/b] Black paint was sprayed onto a white surface. Prove that there are two points of the same color, the distance between which is $1965$ meters.
PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988081_1965_leningrad_math_olympiad]here[/url].
2017 Iran MO (3rd round), 3
Ali has $6$ types of $2\times2$ squares with cells colored in white or black, and has presented them to Mohammad as forbidden tiles.
$a)$ Prove that Mohammad can color the cells of the infinite table (from each $4$ sides.) in black or white such that there's no forbidden tiles in the table.
$b)$ Prove that Ali can present $7$ forbidden tiles such that Mohammad cannot achieve his goal.
2012 AMC 10, 17
Jesse cuts a circular paper disk of radius $12$ along two radii to form two sectors, the smaller having a central angle of $120$ degrees. He makes two circular cones, using each sector to form the lateral surface of a cone. What is the ratio of the volume of the smaller cone to that of the larger?
$ \textbf{(A)}\ \frac{1}{8} \qquad\textbf{(B)}\ \frac{1}{4} \qquad\textbf{(C)}\ \frac{\sqrt{10}}{10} \qquad\textbf{(D)}\ \frac{\sqrt{5}}{6} \qquad\textbf{(E)}\ \frac{\sqrt{10}}{5} $
2014 IMO Shortlist, A6
Find all functions $f : \mathbb{Z} \to\mathbb{ Z}$ such that
\[ n^2+4f(n)=f(f(n))^2 \]
for all $n\in \mathbb{Z}$.
[i]Proposed by Sahl Khan, UK[/i]
2009 Nordic, 1
A point $P$ is chosen in an arbitrary triangle. Three lines are drawn through $P$ which are parallel to the sides of the triangle. The lines divide the triangle into three smaller triangles and three parallelograms. Let $f$ be the ratio between the total area of the three smaller triangles and the area of the given triangle. Prove that $f\ge\frac{1}{3}$ and determine those points $P$ for which $f =\frac{1}{3}$ .
2001 Turkey MO (2nd round), 2
Two nonperpendicular lines throught the point $A$ and a point $F$ on one of these lines different from $A$ are given. Let $P_{G}$ be the intersection point of tangent lines at $G$ and $F$ to the circle through the point $A$, $F$ and $G$ where $G$ is a point on the given line different from the line $FA$. What is the locus of $P_{G}$ as $G$ varies.
Estonia Open Senior - geometry, 2014.1.4
In a plane there is a triangle $ABC$. Line $AC$ is tangent to circle $c_A$ at point $C$ and circle $c_A$ passes through point $B$. Line $BC$ is tangent to circle $c_B$ at point $C$ and circle $c_B$ passes through point $A$. The second intersection point $S$ of circles $c_A$ and $c_B$ coincides with the incenter of triangle $ABC$. Prove that the triangle $ABC$ is equilateral.
1999 Austrian-Polish Competition, 6
Solve in the nonnegative real numbers the system of equations
$$\begin{cases} x_n^2 + x_nx_{n-1} + x_{n-1}^4 = 1 \,\,\,\, for \,\,\,\, n = 1,2,..., 1999 \\\
x_0 = x_{1999} \end{cases}$$
2022 Switzerland Team Selection Test, 6
Let $n \geq 2$ be an integer. Prove that if $$\frac{n^2+4^n+7^n}{n}$$ is an integer, then it is divisible by 11.
2018 Iran MO (3rd Round), 1
For positive real numbers$a,b,c$such that $ab+ac+bc=1$ prove that:
$\prod\limits_{cyc} (\sqrt{bc}+\frac{1}{2a+\sqrt{bc}}) \ge 8abc$
1989 IMO Longlists, 37
There are n cars waiting at distinct points of a circular race track. At the starting signal each car starts. Each car may choose arbitrarily which of the two possible directions to go. Each car has the same constant speed. Whenever two cars meet they both change direction (but not speed). Show that at some time each car is back at its starting point.
2018 Vietnam Team Selection Test, 1
Let $ABC$ be a acute, non-isosceles triangle. $D,\ E,\ F$ are the midpoints of sides $AB,\ BC,\ AC$, resp. Denote by $(O),\ (O')$ the circumcircle and Euler circle of $ABC$. An arbitrary point $P$ lies inside triangle $DEF$ and $DP,\ EP,\ FP$ intersect $(O')$ at $D',\ E',\ F'$, resp. Point $A'$ is the point such that $D'$ is the midpoint of $AA'$. Points $B',\ C'$ are defined similarly.
a. Prove that if $PO=PO'$ then $O\in(A'B'C')$;
b. Point $A'$ is mirrored by $OD$, its image is $X$. $Y,\ Z$ are created in the same manner. $H$ is the orthocenter of $ABC$ and $XH,\ YH,\ ZH$ intersect $BC, AC, AB$ at $M,\ N,\ L$ resp. Prove that $M,\ N,\ L$ are collinear.
2008 Bulgaria National Olympiad, 3
Let $M$ be the set of the integer numbers from the range $[-n, n]$. The subset $P$ of $M$ is called a [i]base subset[/i] if every number from $M$ can be expressed as a sum of some different numbers from $P$. Find the smallest natural number $k$ such that every $k$ numbers that belongs to $M$ form a base subset.
2024 New Zealand MO, 3
Let $A,B,C,D,E$ be five different points on the circumference of a circle in that (cyclic) order. Let $F$ be the intersection of chords $BD$ and $CE$. Show that if $AB=AE=AF$ then lines $AF$ and $CD$ are perpendicular.
2003 AMC 8, 14
In this addition problem, each letter stands for a different digit.
$ \setlength{\tabcolsep}{0.5mm}\begin{array}{cccc}&T & W & O\\ \plus{} &T & W & O\\ \hline F& O & U & R\end{array} $
If T = 7 and the letter O represents an even number, what is the only possible value for W?
$\textbf{(A)}\ 0 \qquad
\textbf{(B)}\ 1 \qquad
\textbf{(C)}\ 2\qquad
\textbf{(D)}\ 3\qquad
\textbf{(E)}\ 4$
2013 BMT Spring, P1
Suppose a convex polygon has a perimeter of $1$. Prove that it can be covered with a circle of radius $1/4$.
2022 Brazil Team Selection Test, 2
For each integer $n\ge 1,$ compute the smallest possible value of \[\sum_{k=1}^{n}\left\lfloor\frac{a_k}{k}\right\rfloor\] over all permutations $(a_1,\dots,a_n)$ of $\{1,\dots,n\}.$
[i]Proposed by Shahjalal Shohag, Bangladesh[/i]
1976 IMO Shortlist, 7
Let $I = (0, 1]$ be the unit interval of the real line. For a given number $a \in (0, 1)$ we define a map $T : I \to I$ by the formula
if
\[ T (x, y) = \begin{cases} x + (1 - a),&\mbox{ if } 0< x \leq a,\\ \text{ } \\ x - a, & \mbox{ if } a < x \leq 1.\end{cases} \]
Show that for every interval $J \subset I$ there exists an integer $n > 0$ such that $T^n(J) \cap J \neq \emptyset.$
2006 Junior Balkan Team Selection Tests - Moldova, 1
Five segments have lengths such that any three of them can be sides of a - possibly degenerate - triangle. Also, the lengths of these segments are nonzero and pairwisely different. Prove that there exists at least one acute-angled triangle among these triangles.