This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2017 Harvard-MIT Mathematics Tournament, 1

Tags:
A random number generator will always output $7$. Sam uses this random number generator once. What is the expected value of the output?

2010 Iran Team Selection Test, 7

Without lifting pen from paper, we draw a polygon in such away that from every two adjacent sides one of them is vertical. In addition, while drawing the polygon all vertical sides have been drawn from up to down. Prove that this polygon has cut itself.

2024 ELMO Shortlist, A7

For some positive integer $n,$ Elmo writes down the equation \[x_1+x_2+\dots+x_n=x_1+x_2+\dots+x_n.\] Elmo inserts at least one $f$ to the left side of the equation and adds parentheses to create a valid functional equation. For example, if $n=3,$ Elmo could have created the equation \[f(x_1+f(f(x_2)+x_3))=x_1+x_2+x_3.\] Cookie Monster comes up with a function $f: \mathbb{Q}\to\mathbb{Q}$ which is a solution to Elmo's functional equation. (In other words, Elmo's equation is satisfied for all choices of $x_1,\dots,x_n\in\mathbb{Q})$. Is it possible that there is no integer $k$ (possibly depending on $f$) such that $f^k(x)=x$ for all $x$? [i]Srinivas Arun[/i]

2019 Harvard-MIT Mathematics Tournament, 6

Tags: geometry , hmmt
Six unit disks $C_1$, $C_2$, $C_3$, $C_4$, $C_5$, $C_6$ are in the plane such that they don't intersect each other and $C_i$ is tangent to $C_{i+1}$ for $1 \le i \le 6$ (where $C_7 = C_1$). Let $C$ be the smallest circle that contains all six disks. Let $r$ be the smallest possible radius of $C$, and $R$ the largest possible radius. Find $R - r$.

2019 CIIM, Problem 6

Tags: function
Determine all the injective functions $f : \mathbb{Z}_+ \to \mathbb{Z}_+$, such that for each pair of integers $(m, n)$ the following conditions hold: $a)$ $f(mn) = f(m)f(n)$ $b)$ $f(m^2 + n^2) \mid f(m^2) + f(n^2).$

2022 Belarusian National Olympiad, 8.6

A table $2022 \times 2022$ is divided onto the tiles of two types: $L$-tetromino and $Z$-tetromino. Determine the least amount of $Z$-tetromino one needs to use.

1951 Moscow Mathematical Olympiad, 196

Tags: geometry , ruler , parallel
Given three equidistant parallel lines. Express by points of the corresponding lines the values of the resistance, voltage and current in a conductor so as to obtain the voltage $V = I \cdot R$ by connecting with a ruler the points denoting the resistance $R$ and the current $I$. (Each point of each scale denotes only one number). [hide=similar wording]Three parallel straight lines are given at equal distances from each other. How to depict by points of the corresponding straight lines the values of resistance, voltage and the current in the conductor, so that, applying a ruler to to points depicting the values of resistance R and values of current I, obtain on the voltage scale a point depicting the value of voltage V = I R (point each scale represents one and only one number).[/hide]

2018 PUMaC Algebra A, 4

Tags: algebra
Suppose real numbers $a, b, c, d$ satisfy $a + b + c + d = 17$ and $ab + bc + cd + da = 46$. If the minimum possible value of $a^2 + b^2 + c^2 + d^2$ can be expressed as a rational number $\frac{p}{q}$ in simplest form, find $p + q$.

2018 JBMO Shortlist, A7

Let $A$ be a set of positive integers satisfying the following : $a.)$ If $n \in A$ , then $n \le 2018$. $b.)$ If $S \subset A$ such that $|S|=3$, then there exists $m,n \in S$ such that $|n-m| \ge \sqrt{n}+\sqrt{m}$ What is the maximum cardinality of $A$ ?

2011 Romanian Master of Mathematics, 4

Given a positive integer $\displaystyle n = \prod_{i=1}^s p_i^{\alpha_i}$, we write $\Omega(n)$ for the total number $\displaystyle \sum_{i=1}^s \alpha_i$ of prime factors of $n$, counted with multiplicity. Let $\lambda(n) = (-1)^{\Omega(n)}$ (so, for example, $\lambda(12)=\lambda(2^2\cdot3^1)=(-1)^{2+1}=-1$). Prove the following two claims: i) There are infinitely many positive integers $n$ such that $\lambda(n) = \lambda(n+1) = +1$; ii) There are infinitely many positive integers $n$ such that $\lambda(n) = \lambda(n+1) = -1$. [i](Romania) Dan Schwarz[/i]

1990 IMO Longlists, 28

Tags: geometry
Let $ABC$ be an arbitrary acute triangle. Circle $\Gamma$ satisfies the following conditions: (i) Circle $\Gamma$ intersects all three sides of triangle $ABC.$ (ii) In the convex hexagon formed by above six intersections, the three pairs of opposite sides are parallel respectively. (The hexagon maybe degenerate, that is, two or more vertices are coincide. In this case, "opposite sides are parallel" is defined through limit opinion.) Find the locus of the center of circle $\Gamma$, and explain how to construct the locus.

2012 Kazakhstan National Olympiad, 2

We call a $6\times 6$ table consisting of zeros and ones [i]right[/i] if the sum of the numbers in each row and each column is equal to $3$. Two right tables are called [i]similar[/i] if one can get from one to the other by successive interchanges of rows and columns. Find the largest possible size of a set of pairwise similar right tables.

2021 Israel TST, 2

Given 10 light switches, each can be in two states: on and off. For each pair of switches there is a light bulb which is on if and only if when both switches are on (45 bulbs in total). The bulbs and the switches are unmarked so it is unclear which switches correspond to which bulb. In the beginning all switches are off. How many flips are needed to find out regarding all bulbs which switches are connected to it? On each step you can flip precisely one switch

1987 Romania Team Selection Test, 8

Let $ABCD$ be a square and $a$ be the length of his edges. The segments $AE$ and $CF$ are perpendicular on the square's plane in the same half-space and they have the length $AE=a$, $CF=b$ where $a<b<a\sqrt 3$. If $K$ denoted the set of the interior points of the square $ABCD$ determine $\min_{M\in K} \left( \max ( EM, FM ) \right) $ and $\max_{M\in K} \left( \min (EM,FM) \right)$. [i]Octavian Stanasila[/i]

2013 Miklós Schweitzer, 9

Prove that there is a function ${f: (0,\infty) \rightarrow (0,\infty)}$ which is nowhere continuous and for all ${x,y \in (0,\infty)}$ and any rational ${\alpha}$ we have \[ \displaystyle f\left( \left(\frac{x^\alpha+y^\alpha}{2}\right)^{\frac{1}{\alpha}}\right)\leq \left(\frac{f(x)^\alpha +f(y)^\alpha }{2}\right)^{\frac{1}{\alpha}}. \] Is there such a function if instead the above relation holds for every ${x,y \in (0,\infty)}$ and for every irrational ${\alpha}?$ [i]Proposed by Maksa Gyula and Zsolt Páles[/i]

2019 Serbia National Math Olympiad, 3

Tags: geometry
Let $k$ be the circle inscribed in convex quadrilateral $ABCD$. Lines $AD$ and $BC$ meet at $P$ ,and circumcircles of $\triangle PAB$ and $\triangle PCD$ meet in $X$ . Prove that tangents from $X$ to $k$ form equal angles with lines $AX$ and $CX$ .

2012 Vietnam Team Selection Test, 2

Tags: inequalities
Prove that $c=10\sqrt{24}$ is the largest constant such that if there exist positive numbers $a_1,a_2,\ldots ,a_{17}$ satisfying: \[\sum_{i=1}^{17}a_i^2=24,\ \sum_{i=1}^{17}a_i^3+\sum_{i=1}^{17}a_i<c \] then for every $i,j,k$ such that $1\le 1<j<k\le 17$, we have that $x_i,x_j,x_k$ are sides of a triangle.

1979 IMO Longlists, 61

There are two non-decreasing sequences $\{a_i\}$ and $\{b_i\}$ of $n$ real numbers each, such that $a_i\le a_{i+1}$ for each $1\le i\le n-1$, and $b_i\le b_{i+1}$ for each $1\le i\le n-1$, and $\sum_{k=1}^{m}{a_k}\ge \sum_{k=1}^{m}{b_k}$ where $m\le n$ with equality for $m=n$. For a convex function $f$ defined on the real numbers, prove that $\sum_{k=1}^{n}{f(a_k)}\le \sum_{k=1}^{n}{f(b_k)}$.

2000 All-Russian Olympiad Regional Round, 10.4

For what smallest $n$ can a $n \times n$ square be cut into squares $40 \times 40$ and $49 \times 49$ so that squares of both types are present?

2008 Romania Team Selection Test, 4

Let $ n$ be a nonzero positive integer. A set of persons is called a $ n$-balanced set if in any subset of $ 3$ persons there exists at least two which know each other and in each subset of $ n$ persons there are two which don't know each other. Prove that a $ n$-balanced set has at most $ (n \minus{} 1)(n \plus{} 2)/2$ persons.

2019 Dutch BxMO TST, 5

In a country, there are $2018$ cities, some of which are connected by roads. Each city is connected to at least three other cities. It is possible to travel from any city to any other city using one or more roads. For each pair of cities, consider the shortest route between these two cities. What is the greatest number of roads that can be on such a shortest route?

2013 Bundeswettbewerb Mathematik, 4

Two players $A$ and $B$ play the following game taking alternate moves. In each move, a player writes one digit on the blackboard. Each new digit is written either to the right or left of the sequence of digits already written on the blackboard. Suppose that $A$ begins the game and initially the blackboard was empty. $B$ wins the game if ,after some move of $B$, the sequence of digits written in the blackboard represents a perfect square. Prove that $A$ can prevent $B$ from winning.

2007 Bulgarian Autumn Math Competition, Problem 11.4

There are 1000 towns $A_{1},A_{2},\ldots ,A_{1000}$ with airports in a country and some of them are connected via flights. It's known that the $i$-th town is connected with $d_{i}$ other towns where $d_{1}\leq d_{2}\leq \ldots \leq d_{1000}$ and $d_{j}\geq j+1$ for every $j=1,2,\ldots 999-d_{999}$. Prove that if the airport of any town $A_{k}$ is closed, then we'd still be able to get from any town $A_{i}$ to any $A_{j}$ for $i,j\neq k$ (possibly by more than one flight).

2013 German National Olympiad, 4

Let $ABCDEFGH$ be a cube of sidelength $a$ and such that $AG$ is one of the space diagonals. Consider paths on the surface of this cube. Then determine the set of points $P$ on the surface for which the shortest path from $P$ to $A$ and from $P$ to $G$ have the same length $l.$ Also determine all possible values of $l$ depending on $a.$

2011 Indonesia TST, 3

Circle $\omega$ is inscribed in quadrilateral $ABCD$ such that $AB$ and $CD$ are not parallel and intersect at point $O.$ Circle $\omega_1$ touches the side $BC$ at $K$ and touches line $AB$ and $CD$ at points which are located outside quadrilateral $ABCD;$ circle $\omega_2$ touches side $AD$ at $L$ and touches line $AB$ and $CD$ at points which are located outside quadrilateral $ABCD.$ If $O,K,$ and $L$ are collinear$,$ then show that the midpoint of side $BC,AD,$ and the center of circle $\omega$ are also collinear.