This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2021 Harvard-MIT Mathematics Tournament., 7

In triangle $ABC$, let $M$ be the midpoint of $BC$ and $D$ be a point on segment $AM$. Distinct points $Y$ and $Z$ are chosen on rays $\overrightarrow{CA}$ and $\overrightarrow{BA}$ , respectively, such that $\angle DYC=\angle DCB$ and $\angle DBC=\angle DZB$. Prove that the circumcircle of $\Delta DYZ$ is tangent to the circumcircle of $\Delta DBC$.

2014 Junior Regional Olympiad - FBH, 2

Tags: percent
We know that raw wheat has $70\%$ moisture and dry wheat has $10\%$ moisture. One miller bought $3$ tons of raw wheat with price of $0.4 \$$ per kilo. At which price miller has to sell dry wheat, so he gets $80\%$ profit?

2013 May Olympiad, 4

Tags: algebra
Pablo wrote $5$ numbers on one sheet and then wrote the numbers $6,7,8,8,9,9,10,10,11$ and $ 12$ on another sheet that he gave Sofia, indicating that those numbers are the possible sums of two of the numbers that he had hidden. Decide if with this information Sofia can determine the five numbers Pablo wrote .

2017 Harvard-MIT Mathematics Tournament, 15

Start by writing the integers $1, 2, 4, 6$ on the blackboard. At each step, write the smallest positive integer $n$ that satisfies both of the following properties on the board. [list] [*] $n$ is larger than any integer on the board currently. [*] $n$ cannot be written as the sum of $2$ distinct integers on the board. [/list] Find the $100$-th integer that you write on the board. Recall that at the beginning, there are already $4$ integers on the board.

2017 NIMO Problems, 4

Tags:
Let $z$ be a complex number. If the equation \[x^3 + (4-i)x^2 + (2+5i)x = z\] has two roots that form a conjugate pair, find the absolute value of the real part of $z$. [i]Proposed by Michael Tang[/i]

2009 Tournament Of Towns, 5

A castle is surrounded by a circular wall with $9$ towers which are guarded by knights during the night. Every hour the castle clock strikes and the guards shift to the neighboring towers, each guard always moves in the same direction (either clockwise or counterclockwise). Given that (i) during the night each knight guards every tower (ii) at some hour each tower was guarded by at least two knights (iii) at some hour exactly $5$ towers were guarded by single knights, prove that at some hour one of the towers was unguarded.

2013 IMO, 5

Let $\mathbb Q_{>0}$ be the set of all positive rational numbers. Let $f:\mathbb Q_{>0}\to\mathbb R$ be a function satisfying the following three conditions: (i) for all $x,y\in\mathbb Q_{>0}$, we have $f(x)f(y)\geq f(xy)$; (ii) for all $x,y\in\mathbb Q_{>0}$, we have $f(x+y)\geq f(x)+f(y)$; (iii) there exists a rational number $a>1$ such that $f(a)=a$. Prove that $f(x)=x$ for all $x\in\mathbb Q_{>0}$. [i]Proposed by Bulgaria[/i]

Kyiv City MO 1984-93 - geometry, 1993.11.3

Two cubes are inscribed in a sphere of radius $R$. Calculate the sum of squares of all segments connecting the vertices of one cube with the vertices of the other cube

2017 AIME Problems, 10

Tags:
Rectangle $ABCD$ has side lengths $AB=84$ and $AD=42$. Point $M$ is the midpoint of $\overline{AD}$, point $N$ is the trisection point of $\overline{AB}$ closer to $A$, and point $O$ is the intersection of $\overline{CM}$ and $\overline{DN}$. Point $P$ lies on the quadrilateral $BCON$, and $\overline{BP}$ bisects the area of $BCON$. Find the area of $\triangle{CDP}$.

1999 AMC 8, 4

Tags:
The diagram shows the miles traveled by bikers Alberto and Bjorn. After four hours, about how many more miles has Alberto biked than Bjorn? [asy] for (int a = 0; a < 6; ++a) { for (int b = 0; b < 6; ++b) { dot((4*a,3*b)); } } draw((0,0)--(20,0)--(20,15)--(0,15)--cycle); draw((0,0)--(16,12)); draw((0,0)--(16,9)); label(rotate(30)*"Bjorn",(12,6.75),SE); label(rotate(37)*"Alberto",(11,8.25),NW); label("$0$",(0,0),S); label("$1$",(4,0),S); label("$2$",(8,0),S); label("$3$",(12,0),S); label("$4$",(16,0),S); label("$5$",(20,0),S); label("$0$",(0,0),W); label("$15$",(0,3),W); label("$30$",(0,6),W); label("$45$",(0,9),W); label("$60$",(0,12),W); label("$75$",(0,15),W); label("H",(6,-2),S); label("O",(8,-2),S); label("U",(10,-2),S); label("R",(12,-2),S); label("S",(14,-2),S); label("M",(-4,11),N); label("I",(-4,9),N); label("L",(-4,7),N); label("E",(-4,5),N); label("S",(-4,3),N);[/asy] $ \text{(A)}\ 15\qquad\text{(B)}\ 20\qquad\text{(C)}\ 25\qquad\text{(D)}\ 30\qquad\text{(E)}\ 35 $

2007 AIME Problems, 8

The polynomial $P(x)$ is cubic. What is the largest value of $k$ for which the polynomials $Q_{1}(x) = x^{2}+(k-29)x-k$ and $Q_{2}(x) = 2x^{2}+(2k-43)x+k$ are both factors of $P(x)$?

2021/2022 Tournament of Towns, P4

Given is a segment $AB$. Three points $X, Y, Z$ are picked in the space so that $ABX$ is an equilateral triangle and $ABYZ$ is a square. Prove that the orthocenters of all triangles $XYZ$ obtained in this way belong to a fixed circle. [i]Alexandr Matveev[/i]

1995 South africa National Olympiad, 3

Tags: algebra
Suppose that $a_1,a_2,\dots,a_n$ are the numbers $1,2,3,\dots,n$ but written in any order. Prove that \[(a_1-1)^2+(a_2-2)^2+\cdots+(a_n-n)^2\] is always even.

2000 Denmark MO - Mohr Contest, 3

A [i]Georg Mohr[/i] cube is a cube with six faces printed respectively $G, E, O, R, M$ and $H$. Peter has nine identical Georg Mohr dice. Is it possible to stack them on top of each other for a tower there on each of the four pages in some order show the letters $G\,\, E \,\, O \,\, R \,\, G \,\, M \,\, O \,\, H \,\, R$?

2020 Argentina National Olympiad, 2

Let $k\ge 1$ be an integer. Determine the smallest positive integer $n$ such that some cells on an $n \times n$ board can be painted black so that in each row and in each column there are exactly $k$ black cells, and furthermore, the black cells do not share a side or a vertex with another black square. Clarification: You have to answer n based on $k$.

1971 Canada National Olympiad, 3

$ABCD$ is a quadrilateral with $AD=BC$. If $\angle ADC$ is greater than $\angle BCD$, prove that $AC>BD$.

2010 Indonesia TST, 3

Let $ \mathbb{Z}$ be the set of all integers. Define the set $ \mathbb{H}$ as follows: (1). $ \dfrac{1}{2} \in \mathbb{H}$, (2). if $ x \in \mathbb{H}$, then $ \dfrac{1}{1\plus{}x} \in \mathbb{H}$ and also $ \dfrac{x}{1\plus{}x} \in \mathbb{H}$. Prove that there exists a bijective function $ f: \mathbb{Z} \rightarrow \mathbb{H}$.

1992 Dutch Mathematical Olympiad, 2

Tags:
In the fraction below and its decimal notation (with period of length $ 4$) every letter represents a digit, and different letters denote different digits. The numerator and denominator are coprime. Determine the value of the fraction: $ \frac{ADA}{KOK}\equal{}0.SNELSNELSNELSNEL...$ $ Note.$ Ada Kok is a famous dutch swimmer, and "snel" is Dutch for "fast".

2017 Irish Math Olympiad, 2

$5$ teams play in a soccer competition where each team plays one match against each of the other four teams. A winning team gains $5$ points and a losing team $0$ points. For a $0-0$ draw both teams gain $1$ point, and for other draws ($1-1,2-2,3-3,$etc.) both teams gain 2 points. At the end of the competition, we write down the total points for each team, and we find that they form 5 consecutive integers. What is the minimum number of goals scored?

2024 Bulgaria MO Regional Round, 12.2

Let $N$ be a positive integer. The sequence $x_1, x_2, \ldots$ of non-negative reals is defined by $$x_n^2=\sum_{i=1}^{n-1} \sqrt{x_ix_{n-i}}$$ for all positive integers $n>N$. Show that there exists a constant $c>0$, such that $x_n \leq \frac{n} {2}+c$ for all positive integers $n$.

2020 Brazil National Olympiad, 6

Let $k$ be a positive integer. Arnaldo and Bernaldo play a game in a table $2020\times 2020$, initially all the cells are empty. In each round a player chooses a empty cell and put one red token or one blue token, Arnaldo wins if in some moment, there are $k$ consecutive cells in the same row or column with tokens of same color, if all the cells have a token and there aren't $k$ consecutive cells(row or column) with same color, then Bernaldo wins. If the players play alternately and Arnaldo goes first, determine for which values of $k$, Arnaldo has the winning strategy.

2011 NIMO Problems, 11

How many ordered pairs of positive integers $(m, n)$ satisfy the system \begin{align*} \gcd (m^3, n^2) & = 2^2 \cdot 3^2, \\ \text{LCM} [m^2, n^3] & = 2^4 \cdot 3^4 \cdot 5^6, \end{align*} where $\gcd(a, b)$ and $\text{LCM}[a, b]$ denote the greatest common divisor and least common multiple of $a$ and $b$, respectively?

2009 Peru Iberoamerican Team Selection Test, P6

Let $P$ be a set of $n \ge 2$ distinct points in the plane, which does not contain any triplet of aligned points. Let $S$ be the set of all segments whose endpoints are points of $P$. Given two segments $s_1, s_2 \in S$, we write $s_1 \otimes s_2$ if the intersection of $s_1$ with $s_2$ is a point other than the endpoints of $s_1$ and $s_2$. Prove that there exists a segment $s_0 \in S$ such that the set $\{s \in S | s_0 \otimes s\}$ has at least $\frac{1}{15}\dbinom{n-2}{2}$ elements

2014 Contests, 1

1. What is the probability that a randomly chosen word of this sentence has exactly four letters?

2006 Bulgaria Team Selection Test, 1

Tags: algebra , induction
Find all sequences of positive integers $\{a_n\}_{n=1}^{\infty}$, for which $a_4=4$ and \[\frac{1}{a_1a_2a_3}+\frac{1}{a_2a_3a_4}+\cdots+\frac{1}{a_na_{n+1}a_{n+2}}=\frac{(n+3)a_n}{4a_{n+1}a_{n+2}}\] for all natural $n \geq 2$. [i]Peter Boyvalenkov[/i]