This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2008 ITest, 75

Let \[S=\sqrt{1+\dfrac1{1^2}+\dfrac1{2^2}}+\sqrt{1+\dfrac1{2^2}+\dfrac1{3^2}}+\cdots+\sqrt{1+\dfrac1{2007^2}+\dfrac1{2008^2}}.\] Compute $\lfloor S^2\rfloor$.

2005 All-Russian Olympiad Regional Round, 9.1

Five teams participated in the commercial football tournament. Each had to play exactly one match with each other. Due to financial difficulties, the organizers canceled some games. In the end It turned out that all teams scored a different number of points and not a single team in the points column had a zero. What is the smallest number of games could be played in a tournament if three points were awarded for a win, for a draw - one, for a defeat - zero?

2020 Simon Marais Mathematics Competition, B1

Let $\mathcal{M}$ be the set of $5\times 5$ real matrices of rank $3$. Given a matrix in $\mathcal{M}$, the set of columns of $A$ has $2^5-1=31$ nonempty subsets. Let $k_A$ be the number of these subsets that are linearly independent. Determine the maximum and minimum values of $k_A$, as $A$ varies over $\mathcal{M}$. [i]The rank of a matrix is the dimension of the span of its columns.[/i]

2019 Online Math Open Problems, 26

Tags:
There exists a unique prime $p > 5$ for which the decimal expansion of $\tfrac{1}{p}$ repeats with a period of exactly 294. Given that $p > 10^{50}$, compute the remainder when $p$ is divided by $10^9$. [i]Proposed by Ankan Bhattacharya[/i]

1997 Akdeniz University MO, 3

Let for all $k \in {\mathbb N}$ $k$'s sum of the digits is $T(k)$. If a natural number $n$ such that $T(n)=T(1997n)$, prove that $$9\mid n$$

1996 AIME Problems, 6

In triangle $ ABC$ the medians $ \overline{AD}$ and $ \overline{CE}$ have lengths 18 and 27, respectively, and $ AB \equal{} 24$. Extend $ \overline{CE}$ to intersect the circumcircle of $ ABC$ at $ F$. The area of triangle $ AFB$ is $ m\sqrt {n}$, where $ m$ and $ n$ are positive integers and $ n$ is not divisible by the square of any prime. Find $ m \plus{} n$.

2007 Estonia Team Selection Test, 3

Let $n$ be a natural number, $n > 2$. Prove that if $\frac{b^n-1}{b-1}$ is a prime power for some positive integer $b$ then $n$ is prime.

2005 Federal Competition For Advanced Students, Part 2, 1

The function $f : (0,...2005) \rightarrow N$ has the properties that $f(2x+1)=f(2x)$, $f(3x+1)=f(3x)$ and $f(5x+1)=f(5x)$ with $x \in (0,1,2,...,2005)$. How many different values can the function assume?

2011 Pre - Vietnam Mathematical Olympiad, 2

Tags: function , algebra
Find all function $f,g: \mathbb{Q} \to \mathbb{Q}$ such that \[\begin{array}{l} f\left( {g\left( x \right) - g\left( y \right)} \right) = f\left( {g\left( x \right)} \right) - y \\ g\left( {f\left( x \right) - f\left( y \right)} \right) = g\left( {f\left( x \right)} \right) - y \\ \end{array}\] for all $x,y \in \mathbb{Q}$.

2008 AMC 10, 10

Tags: geometry
Each of the sides of a square $ S_1$ with area $ 16$ is bisected, and a smaller square $ S_2$ is constructed using the bisection points as vertices. The same process is carried out on $ S_2$ to construct an even smaller square $ S_3$. What is the area of $ S_3$? $ \textbf{(A)}\ \frac {1}{2} \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 4$

2010 Kazakhstan National Olympiad, 1

Triangle $ABC$ is given. Circle $ \omega $ passes through $B$, touch $AC$ in $D$ and intersect sides $AB$ and $BC$ at $P$ and $Q$ respectively. Line $PQ$ intersect $BD$ and $AC$ at $M$ and $N$ respectively. Prove that $ \omega $, circumcircle of $DMN$ and circle, touching $PQ$ in $M$ and passes through B, intersects in one point.

2022 Purple Comet Problems, 7

Tags:
The value of $$\left(1-\frac{1}{2^2-1}\right)\left(1-\frac{1}{2^3-1}\right)\left(1-\frac{1}{2^4-1}\right)\dots\left(1-\frac{1}{2^{29}-1}\right)$$ can be written as $\tfrac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $2m - n.$

2007 Federal Competition For Advanced Students, Part 2, 3

The triangle $ ABC$ with the circumcircle $ k(U,r)$ is given. On the extension of the radii $ UA$ a point $ P$ is chosen. The reflection of the line $ PB$ on the line $ BA$ is called $ g$. Likewise the reflection of the line $ PC$ on the line $ CA$ is called $ h$. The intersection of $ g$ and $ h$ is called $ Q$. Find the geometric location of all possible intersections $ Q$, while $ P$ passes through the extension of the radii $ UA$.

2021 Alibaba Global Math Competition, 9

Let $\varepsilon$ be positive constant and $u$ satisfies that \[ \begin{cases} (\partial_t-\varepsilon\partial_x^2-\partial_y^2)u=0, & (t,x,y) \in \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}_+,\\ \partial_y u\vert_{y=0}=\partial_x h, &\\u\vert_{t=0}=0. & \end{cases}\] Here $h(t,x)$ is a smooth Schwartz function. Define the operator $e^{a\langle D\rangle}$ \[\mathcal{F}_x(e^{a\langle D\rangle} f)(k)=e^{a\langle k\rangle} \mathcal{F}_x(f)(k), \quad \langle k\rangle=1+\vert k\vert,\] where $\mathcal{F}_x$ stands for the Fourier transform in $x$. Show that \[\int_0^T \|e^{(1-s)\langle D\rangle} u\|_{L_{x,y}^2}^2 ds \le C \int_0^T \|e^{(1-s)\langle D\rangle} h\|_{H_x^{\frac{1}{4}}}^2 ds\] with constant $C$ independent of $\varepsilon, T$ and $h$.

1993 Poland - Second Round, 4

Tags: algebra
Let $ (x_n)$ be the sequence of natural number such that: $ x_1\equal{}1$ and $ x_n<x_{n\plus{}1}\leq 2n$ for $ 1\leq n$. Prove that for every natural number $ k$, there exist the subscripts $ r$ and $ s$, such that $ x_r\minus{}x_s\equal{}k$.

1968 Putnam, B6

Show that one cannot find compact sets $A_1, A_2, A_3, \ldots$ in $\mathbb{R}$ such that (1) All elements of $A_n$ are rational. (2) Any compact set $K\subset \mathbb{R}$ which only contains rational numbers is contained in some $A_{m}$.

2017 Estonia Team Selection Test, 9

Tags: geometry
Let $B = (-1, 0)$ and $C = (1, 0)$ be fixed points on the coordinate plane. A nonempty, bounded subset $S$ of the plane is said to be [i]nice[/i] if $\text{(i)}$ there is a point $T$ in $S$ such that for every point $Q$ in $S$, the segment $TQ$ lies entirely in $S$; and $\text{(ii)}$ for any triangle $P_1P_2P_3$, there exists a unique point $A$ in $S$ and a permutation $\sigma$ of the indices $\{1, 2, 3\}$ for which triangles $ABC$ and $P_{\sigma(1)}P_{\sigma(2)}P_{\sigma(3)}$ are similar. Prove that there exist two distinct nice subsets $S$ and $S'$ of the set $\{(x, y) : x \geq 0, y \geq 0\}$ such that if $A \in S$ and $A' \in S'$ are the unique choices of points in $\text{(ii)}$, then the product $BA \cdot BA'$ is a constant independent of the triangle $P_1P_2P_3$.

2021 Kyiv City MO Round 1, 7.3

Petryk factored the number $10^6 = 1000000$ as a product of $7$ distinct positive integers. Among all such factorings, find the one in which the largest of these $7$ factors is the smallest possible. [i]Proposed by Bogdan Rublov[/i]

2004 Croatia National Olympiad, Problem 4

A frog jumps on the coordinate lattice, starting from the point $(1,1)$, according to the following rules: (i) From point $(a,b)$ the frog can jump to either $(2a,b)$ or $(a,2b)$; (ii) If $a>b$, the frog can also jump from $(a,b)$ to $(a-b,b)$, while for $a<b$ it can jump from $(a,b)$ to $(a,b-a)$. Can the frog get to the point: (a) $(24,40)$; (b) $(40,60)$; (c) $(24,60)$; (d) $(200,4)$?

2021 International Zhautykov Olympiad, 3

Let $n\ge 2$ be an integer. Elwyn is given an $n\times n$ table filled with real numbers (each cell of the table contains exactly one number). We define a [i]rook set[/i] as a set of $n$ cells of the table situated in $n$ distinct rows as well as in n distinct columns. Assume that, for every rook set, the sum of $n$ numbers in the cells forming the set is nonnegative.\\ \\ By a move, Elwyn chooses a row, a column, and a real number $a,$ and then he adds $a$ to each number in the chosen row, and subtracts $a$ from each number in the chosen column (thus, the number at the intersection of the chosen row and column does not change). Prove that Elwyn can perform a sequence of moves so that all numbers in the table become nonnegative.

2014 PUMaC Team, 3

Tags:
How many integer $x$ are there such that $\frac{x^2-6}{x-6}$ is a positive integer?

2004 National Olympiad First Round, 2

Tags:
How many pairs of integers $(x,y)$ are there such that $2x+5y=xy-1$? $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}\ 6 \qquad\textbf{(E)}\ 12 $

2005 France Team Selection Test, 5

Let $ABC$ be a triangle such that $BC=AC+\frac{1}{2}AB$. Let $P$ be a point of $AB$ such that $AP=3PB$. Show that $\widehat{PAC} = 2 \widehat{CPA}.$

2023 Brazil National Olympiad, 1

Show an infinite sequence $a_1, a_2, \ldots$ of integers with both of the following properties: • $a_i \neq 0$ for every positive integer $i$, that is, no term in the sequence is equal to zero; • for all positive integer $n$, $a_n + a_{2n} + \ldots + a_{2023n} = 0$.

VMEO III 2006 Shortlist, N5

Find all triples of integers $(x, y, z)$ such that $x^4 + 5y^4 = z^4$.