This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2019 Saint Petersburg Mathematical Olympiad, 6

The bisectors $BB_1$ and $CC_1$ of the acute triangle $ABC$ intersect in point $I$. On the extensions of the segments $BB_1$ and $CC_1$, the points $B'$ and $C'$ are marked, respectively So, the quadrilateral $AB'IC'$ is a parallelogram. Prove that if $\angle BAC = 60^o$, then the straight line $B'C'$ passes through the intersection point of the circumscribed circles of the triangles $BC_1B'$ and $CB_1C'$.

2020 Vietnam National Olympiad, 6

Let a non-isosceles acute triangle ABC with tha attitude AD, BE, CF and the orthocenter H. DE, DF intersect (AD) at M, N respectively. $P\in AB,Q\in AC$ satisfy $NP\perp AB,MQ\perp AC$ a) Prove that EF is the tangent line of (APQ) b) Let T be the tangency point of (APQ) with EF,.DT $\cap$ MN={K}. L is the reflection of A in MN. Prove that MN, EF ,(DLK) pass through a piont

2010 Swedish Mathematical Competition, 4

We create a sequence by setting $a_1 = 2010$ and requiring that $a_n-a_{n-1}\leq n$ and $a_n$ is also divisible by $n$. Show that $a_{100},a_{101},a_{102},\dots$ form an arithmetic sequence.

II Soros Olympiad 1995 - 96 (Russia), 11.8

Tags: ratio , area , geometry
The following is known about the quadrilateral $ABCD$: triangles $ABC$ and $CDA$ are equal in area, the area of triangle $BCD$ is $k$ times greater than the area of triangle $DAB$, the bisectors of angles $ABC$ and $CDA$ intersect on the diagonal $AC$, straight lines $AC$ and $BD$ are not perpendicular. Find the ratio $AC/BD$.

2012 BMT Spring, 9

A permutation of a set is a bijection from the set to itself. For example, if $\sigma$ is the permutation $1 7\mapsto 3$, $2 \mapsto 1$, and $3 \mapsto 2$, and we apply it to the ordered triplet $(1, 2, 3)$, we get the reordered triplet $(3, 1, 2)$. Let $\sigma$ be a permutation of the set $\{1, ... , n\}$. Let $$\theta_k(m) = \begin{cases} m + 1 & \text{for} \,\, m < k\\ 1 & \text{for} \,\, m = k\\ m & \text{for} \,\, m > k\end{cases}$$ Call a finite sequence $\{a_i\}^{j}_{i=1}$ a disentanglement of $\sigma$ if $\theta_{a_j} \circ ...\circ \theta_{a_j} \circ \sigma$ is the identity permutation. For example, when $\sigma = (3, 2, 1)$, then $\{2, 3\}$ is a disentaglement of $\sigma$. Let $f(\sigma)$ denote the minimum number $k$ such that there is a disentanglement of $\sigma$ of length $k$. Let $g(n)$ be the expected value for $f(\sigma)$ if $\sigma$ is a random permutation of $\{1, ... , n\}$. What is $g(6)$?

2006 France Team Selection Test, 3

Let $a$, $b$ be positive integers such that $b^n+n$ is a multiple of $a^n+n$ for all positive integers $n$. Prove that $a=b$. [i]Proposed by Mohsen Jamali, Iran[/i]

2008 AMC 12/AHSME, 19

In the expansion of \[ \left(1 \plus{} x \plus{} x^2 \plus{} \cdots \plus{} x^{27}\right)\left(1 \plus{} x \plus{} x^2 \plus{} \cdots \plus{} x^{14}\right)^2, \]what is the coefficient of $ x^{28}$? $ \textbf{(A)}\ 195 \qquad \textbf{(B)}\ 196 \qquad \textbf{(C)}\ 224 \qquad \textbf{(D)}\ 378 \qquad \textbf{(E)}\ 405$

Brazil L2 Finals (OBM) - geometry, 2019.4

Let $ ABC $ be an acutangle triangle and $ D $ any point on the $ BC $ side. Let $ E $ be the symmetrical of $ D $ in $ AC $ and $ F $ is the symmetrical $ D $ relative to $ AB $. $ A $ straight $ ED $ intersects straight $ AB $ at $ G $, while straight $ F D $ intersects the line $ AC $ in $ H $. Prove that the points $ A, E, F, G$ and $ H $ are on the same circumference.

2020-IMOC, N2

Find all positive integers $N$ such that the following holds: There exist pairwise coprime positive integers $a,b,c$ with $$\frac1a+\frac1b+\frac1c=\frac N{a+b+c}.$$

1927 Eotvos Mathematical Competition, 2

Find the sum of all distinct four-digit numbers that contain only the digits $1, 2, 3, 4,5$, each at most once.

2023 Portugal MO, 3

A crate with a base of $4 \times 2$ and a height of $2$ is open at the top. Tomas wants to completely fill the crate with some of his cubes. It has $16$ equal cubes of volume $1$ and two equal cubes of volume $8$. A cube of volume $1$ can only be placed on the top layer if the cube on the bottom layer has already been placed. In how many ways can Tom'as fill the box with cubes, placing them one by one?

VMEO I 2004, 4

In a quadrilateral $ABCD$ let $E$ be the intersection of the two diagonals, I the center of the parallelogram whose vertices are the midpoints of the four sides of the quadrilateral, and K the center of the parallelogram whose sides pass through the points. divide the four sides of the quadrilateral into three equal parts (see illustration ). [img]https://cdn.artofproblemsolving.com/attachments/1/c/8f2617103edd8361b8deebbee13c6180fa848b.png[/img] a) Prove that $\overrightarrow{EK} =\frac43 \overrightarrow{EI}$. b) Prove that $$\lambda_A \overrightarrow{KA} +\lambda_B \overrightarrow{KB} + \lambda_C \overrightarrow{KC} + \lambda_D \overrightarrow{KD} = \overrightarrow{0}$$ , where $$\lambda_A=1+\frac{S(ADB)}{S(ABCD)},\lambda_B=1+\frac{S(BCA)}{S(ABCD)},\lambda_C=1+\frac{S(CDB)}{S(ABCD)},\lambda_D=1+\frac{S(DAC)}{S(ABCD)}$$ , where $S$ is the area symbol.

2023 Germany Team Selection Test, 2

Let $m,n \geqslant 2$ be integers, let $X$ be a set with $n$ elements, and let $X_1,X_2,\ldots,X_m$ be pairwise distinct non-empty, not necessary disjoint subset of $X$. A function $f \colon X \to \{1,2,\ldots,n+1\}$ is called [i]nice[/i] if there exists an index $k$ such that \[\sum_{x \in X_k} f(x)>\sum_{x \in X_i} f(x) \quad \text{for all } i \ne k.\] Prove that the number of nice functions is at least $n^n$.

1953 AMC 12/AHSME, 27

Tags: geometry
The radius of the first circle is $ 1$ inch, that of the second $ \frac{1}{2}$ inch, that of the third $ \frac{1}{4}$ inch and so on indefinitely. The sum of the areas of the circles is: $ \textbf{(A)}\ \frac{3\pi}{4} \qquad\textbf{(B)}\ 1.3\pi \qquad\textbf{(C)}\ 2\pi \qquad\textbf{(D)}\ \frac{4\pi}{3} \qquad\textbf{(E)}\ \text{none of these}$

2007 Stanford Mathematics Tournament, 4

Tags: geometry
What is the area of the smallest triangle with all side lengths rational and all vertices lattice points?

1995 IMC, 7

Let $A$ be a $3\times 3$ real matrix such that the vectors $Au$ and $u$ are orthogonal for every column vector $u\in \mathbb{R}^{3}$. Prove that: a) $A^{T}=-A$. b) there exists a vector $v \in \mathbb{R}^{3}$ such that $Au=v\times u$ for every $u\in \mathbb{R}^{3}$, where $v \times u$ denotes the vector product in $\mathbb{R}^{3}$.

2015 IMC, 3

Tags: series , sequence
Let $F(0)=0$, $F(1)=\frac32$, and $F(n)=\frac{5}{2}F(n-1)-F(n-2)$ for $n\ge2$. Determine whether or not $\displaystyle{\sum_{n=0}^{\infty}\, \frac{1}{F(2^n)}}$ is a rational number. (Proposed by Gerhard Woeginger, Eindhoven University of Technology)

2001 German National Olympiad, 6 (11)

In a pyramid $SABCD$ with the base $ABCD$ the triangles $ABD$ and $BCD$ have equal areas. Points $M,N,P,Q$ are the midpoints of the edges $AB,AD,SC,SD$ respectively. Find the ratio between the volumes of the pyramids $SABCD$ and $MNPQ$.

2023 Indonesia TST, A

Find all Polynomial $P(x)$ and $Q(x)$ with Integer Coefficients satisfied the equation: \[Q(a+b) = \frac{P(a) - P(b)}{a - b}\] $\forall a, b \in \mathbb{Z}^+$ and $a>b$

2024 Poland - Second Round, 2

Tags: geometry
Let $ABCD$ be a convex quadrilateral with $\angle ABC=\angle ADC=120^{\circ}$. The point $E$ lies on the segment $AD$ and is such that $AE \cdot BC=AB \cdot DE$ and similarly the point $F$ lies on the segment $BC$ and satisfies $BF \cdot CD=AD \cdot CF$. Show that $BE$ and $DF$ are parallel.

1999 VJIMC, Problem 4

Show that the following implication holds for any two complex numbers $x$ and $y$: if $x+y$, $x^2+y^2$, $x^3+y^3$, $x^4+y^4\in\mathbb Z$, then $x^n+y^n\in\mathbb Z$ for all natural n.

1992 Austrian-Polish Competition, 4

Let $k$ be a positive integer and $u, v$ be real numbers. Consider $P(x) = (x - u^k) (x - uv) (x -v^k) = x^3 + ax^2 + bx + c$. (a) For $k = 2$ prove that if $a, b, c$ are rational then so is $uv$. (b) Is that also true for $k = 3$?

2024 District Olympiad, P3

Let $A\in\mathcal{M}_n(\mathbb{C})$ be an antisymmetric matrix, i.e. $A=-A^t.$[list=a] [*]Prove that if $A\in\mathcal{M}_n(\mathbb{R})$ and $A^2=O_n$ then $A=O_n.$ [*]Assume that $n{}$ is odd. Prove that if $A{}$ is the adjoint of another matrix $B\in\mathcal{M}_n(\mathbb{C})$ then $A^2=O_n.$ [/list]

2001 VJIMC, Problem 2

Prove that for any prime $p\ge5$, the number $$\sum_{0<k<\frac{2p}3}\binom pk$$is divisible by $p^2$.

2018 CCA Math Bonanza, I5

Tags:
Determine all positive numbers $x$ such that \[\frac{16}{x+2}+\frac{4}{x+0}+\frac{9}{x+1}+\frac{100}{x+8}=19.\] [i]2018 CCA Math Bonanza Individual Round #5[/i]