This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2016 IMC, 1

Let $(x_1,x_2,\ldots)$ be a sequence of positive real numbers satisfying ${\displaystyle \sum_{n=1}^{\infty}\frac{x_n}{2n-1}=1}$. Prove that $$ \displaystyle \sum_{k=1}^{\infty} \sum_{n=1}^{k} \frac{x_n}{k^2} \le2. $$ (Proposed by Gerhard J. Woeginger, The Netherlands)

2020 Latvia Baltic Way TST, 8

A magician has $300$ cards with numbers from $1$ to $300$ written on them, each number on exactly one card. The magician then lays these cards on a $3 \times 100$ rectangle in the following way - one card in each unit square so that the number cannot be seen and cards with consecutive numbers are in neighbouring squares. Afterwards, the magician turns over $k$ cards of his choice. What is the smallest value of $k$ for which it can happen that the opened cards definitely determine the exact positions of all other cards?

2016 Brazil Team Selection Test, 4

Tags: geometry
Let $ABCD$ be a convex quadrilateral, and let $P$, $Q$, $R$, and $S$ be points on the sides $AB$, $BC$, $CD$, and $DA$, respectively. Let the line segment $PR$ and $QS$ meet at $O$. Suppose that each of the quadrilaterals $APOS$, $BQOP$, $CROQ$, and $DSOR$ has an incircle. Prove that the lines $AC$, $PQ$, and $RS$ are either concurrent or parallel to each other.

2010 IberoAmerican Olympiad For University Students, 7

(a) Prove that, for any positive integers $m\le \ell$ given, there is a positive integer $n$ and positive integers $x_1,\cdots,x_n,y_1,\cdots,y_n$ such that the equality \[ \sum_{i=1}^nx_i^k=\sum_{i=1}^ny_i^k\] holds for every $k=1,2,\cdots,m-1,m+1,\cdots,\ell$, but does not hold for $k=m$. (b) Prove that there is a solution of the problem, where all numbers $x_1,\cdots,x_n,y_1,\cdots,y_n$ are distinct. [i]Proposed by Ilya Bogdanov and Géza Kós.[/i]

2006 Swedish Mathematical Competition, 2

Tags: geometry , incenter
In a triangle $ABC$, point $P$ is the incenter and $A'$, $B'$, $C'$ its orthogonal projections on $BC$, $CA$, $AB$, respectively. Show that $\angle B'A'C'$ is acute.

Oliforum Contest V 2017, 7

Fix $2n$ distinct reals $x_1,y_1,...,x_n,y_n$ and de ne the $n\times n$ matrix where its $(i, j)$-th element is $x_i + y_j$ for all $i, j = 1,..., n$. Show that if the products of the numbers in each column is always the same, then also the products of the numbers in each row is always the same. ( Alberto Alfarano)

2000 Harvard-MIT Mathematics Tournament, 22

Tags:
Find the smallest $n$ such that $2^{2000}$ divides $n!$.

2014 South East Mathematical Olympiad, 3

Tags: incenter , geometry
In an obtuse triangle $ABC$ $(AB>AC)$,$O$ is the circumcentre and $D,E,F$ are the midpoints of $BC,CA,AB$ respectively.Median $AD$ intersects $OF$ and $OE$ at $M$ and $N$ respectively.$BM$ meets $CN$ at point $P$.Prove that $OP\perp AP$

2021 MOAA, 3

Tags: accuracy
Arnav is placing three rectangles into a $3 \times 3$ grid of unit squares. He has a $1\times 3$ rectangle, a $1\times 2$ rectangle, and a $1\times 1$ rectangle. He must place the rectangles onto the grid such that the edges of the rectangles align with the gridlines of the grid. If he is allowed to rotate the rectangles, how many ways can he place the three rectangles into the grid, without overlap? [i]Proposed by William Yue[/i]

2022 Stanford Mathematics Tournament, 10

Tags:
Consider the set of continuous functions $f$, whose $n^{\text{th}}$ derivative exists for all positive integer $n$, satisfying $f(x)=\tfrac{\text{d}^3}{\text{dx}^3}f(x)$, $f(0)+f'(0)+f''(0)=0$, and $f(0)=f'(0)$. For each such function $f$, let $m(f)$ be the smallest nonnegative $x$ satisfying $f(x)=0$. Compute all possible values of $m(f)$.

2016 Math Prize for Girls Olympiad, 1

Tags:
Triangle $T_1$ has sides of length $a_1$, $b_1$, and $c_1$; its area is $K_1$. Triangle $T_2$ has sides of length $a_2$, $b_2$, and $c_2$; its area is $K_2$. Triangle $T_3$ has sides of length $a_1 + a_2$, $b_1 + b_2$, and $c_1 + c_2$; its area is $K_3$. (a) Prove that $K_1^2 + K_2^2 < K_3^2$. (b) Prove that $\sqrt{K_1} + \sqrt{K_2} \le \sqrt{K_3} \,$.

2022 3rd Memorial "Aleksandar Blazhevski-Cane", P1

A $6 \times 6$ board is given such that each unit square is either red or green. It is known that there are no $4$ adjacent unit squares of the same color in a horizontal, vertical, or diagonal line. A $2 \times 2$ subsquare of the board is [i]chesslike[/i] if it has one red and one green diagonal. Find the maximal possible number of chesslike squares on the board. [i]Proposed by Nikola Velov[/i]

2013 Sharygin Geometry Olympiad, 11

a) Let $ABCD$ be a convex quadrilateral and $r_1 \le r_2 \le r_3 \le r_4$ be the radii of the incircles of triangles $ABC, BCD, CDA, DAB$. Can the inequality $r_4 > 2r_3$ hold? b) The diagonals of a convex quadrilateral $ABCD$ meet in point $E$. Let $r_1 \le r_2 \le r_3 \le r_4$ be the radii of the incircles of triangles $ABE, BCE, CDE, DAE$. Can the inequality $r_2 > 2r_1$ hold?

2018 AMC 8, 21

Tags:
How many positive three-digit integers have a remainder of 2 when divided by 6, a remainder of 5 when divided by 9, and a remainder of 7 when divided by 11? $\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad \textbf{(E) }5$

1996 Greece National Olympiad, 2

Tags: geometry
Let $ ABC$ be an acute triangle, $ AD,BE,CZ$ its altitudes and $ H$ its orthocenter. Let $ AI,A \Theta$ be the internal and external bisectors of angle $ A$. Let $ M,N$ be the midpoints of $ BC,AH$, respectively. Prove that: (a) $MN$ is perpendicular to $EZ$ (b) if $ MN$ cuts the segments $ AI,A \Theta$ at the points $ K,L$, then $ KL\equal{}AH$

2001 Italy TST, 4

We are given $2001$ balloons and a positive integer $k$. Each balloon has been blown up to a certain size (not necessarily the same for each balloon). In each step it is allowed to choose at most $k$ balloons and equalize their sizes to their arithmetic mean. Determine the smallest value of $k$ such that, whatever the initial sizes are, it is possible to make all the balloons have equal size after a finite number of steps.

2021 Federal Competition For Advanced Students, P2, 3

Find all triples $(a, b, c)$ of natural numbers $a, b$ and $c$, for which $a^{b + 20} (c-1) = c^{b + 21} - 1$ is satisfied. (Walther Janous)

2004 National Olympiad First Round, 8

Tags:
For how many triples of positive integers $(x,y,z)$, there exists a positive integer $n$ such that $\dfrac{x}{n} = \dfrac{y}{n+1} = \dfrac{z}{n+2}$ where $x+y+z=90$? $ \textbf{(A)}\ 4 \qquad\textbf{(B)}\ 5 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 7 \qquad\textbf{(E)}\ 9 $

2023 China Team Selection Test, P9

Find the largest positive integer $m$ which makes it possible to color several cells of a $70\times 70$ table red such that [list] [*] There are no two red cells satisfying: the two rows in which they are have the same number of red cells, while the two columns in which they are also have the same number of red cells; [*] There are two rows with exactly $m$ red cells each. [/list]

2020-IMOC, C5

Alice and Bob are playing a game on a graph with $n\ge3$ vertices. At each moment, Alice needs to choose two vertices so that the graph is connected even if one of them (along with the edges incident to it) is removed. Each turn, Bob removes one edge in the graph, and upon the removal, Alice needs to re-select the two vertices if necessary. However, Bob has to guarantee that after each removal, any two vertices in the graph are still connected via at most $k$ intermediate vertices. Here $0\le k\le n-2$ is some given integer. Suppose that Bob always knows which two vertices Alice chooses, and that initially, the graph is a complete graph. Alice's objective is to change her choice of the two vertices as few times as possible, and Bob's objective is to make Alive re-select as many times as possible. If both Alice and Bob are sufficiently smart, how many times will Alice change her choice of the two vertices? (usjl)

2008 Princeton University Math Competition, A1/B2

How many $3$-digit numbers contain the digit $7$ exactly once?

2014 IMO Shortlist, A2

Define the function $f:(0,1)\to (0,1)$ by \[\displaystyle f(x) = \left\{ \begin{array}{lr} x+\frac 12 & \text{if}\ \ x < \frac 12\\ x^2 & \text{if}\ \ x \ge \frac 12 \end{array} \right.\] Let $a$ and $b$ be two real numbers such that $0 < a < b < 1$. We define the sequences $a_n$ and $b_n$ by $a_0 = a, b_0 = b$, and $a_n = f( a_{n -1})$, $b_n = f (b_{n -1} )$ for $n > 0$. Show that there exists a positive integer $n$ such that \[(a_n - a_{n-1})(b_n-b_{n-1})<0.\] [i]Proposed by Denmark[/i]

1997 All-Russian Olympiad Regional Round, 8.2

There are 300 apples, any two of which differ in weight by no more than twice. Prove that they can be arranged in packages of two apples so that any two packages differ in weight by no more than one and a half times.

2014 Sharygin Geometry Olympiad, 18

Let $I$ be the incenter of a circumscribed quadrilateral $ABCD$. The tangents to circle $AIC$ at points $A, C$ meet at point $X$. The tangents to circle $BID$ at points $B, D$ meet at point $Y$ . Prove that $X, I, Y$ are collinear.

1993 Putnam, B3

$x$ and $y$ are chosen at random (with uniform density) from the interval $(0, 1)$. What is the probability that the closest integer to $x/y$ is even?