This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1994 AMC 12/AHSME, 5

Tags:
Pat intended to multiply a number by $6$ but instead divided by $6$. Pat then meant to add $14$ but instead subtracted $14$. After these mistakes, the result was $16$. If the correct operations had been used, the value produced would have been $ \textbf{(A)}\ \text{less than 400} \qquad\textbf{(B)}\ \text{between 400 and 600} \qquad\textbf{(C)}\ \text{between 600 and 800} \\ \textbf{(D)}\ \text{between 800 and 1000} \qquad\textbf{(E)}\ \text{greater than 1000}$

1963 AMC 12/AHSME, 22

Tags: ratio
Acute-angled triangle $ABC$ is inscribed in a circle with center at $O$; $\stackrel \frown {AB} = 120$ and $\stackrel \frown {BC} = 72$. A point $E$ is taken in minor arc $AC$ such that $OE$ is perpendicular to $AC$. Then the ratio of the magnitudes of angles $OBE$ and $BAC$ is: $\textbf{(A)}\ \dfrac{5}{18} \qquad \textbf{(B)}\ \dfrac{2}{9} \qquad \textbf{(C)}\ \dfrac{1}{4} \qquad \textbf{(D)}\ \dfrac{1}{3} \qquad \textbf{(E)}\ \dfrac{4}{9}$

2006 Tuymaada Olympiad, 4

For a positive integer, we define it's [i]set of exponents[/i] the unordered list of all the exponents of the primes, in it`s decomposition. For example, $18=2\cdot 3^{2}$ has it`s set of exponents $1,2$ and $300=2^{2}\cdot 3\cdot 5^{2}$ has it`s set of exponents $1,2,2$. There are given two arithmetical progressions $\big(a_{n}\big)_{n}$ and $\big(b_{n}\big)_{n}$, such that for any positive integer $n$, $a_{n}$ and $b_{n}$ have the same set of exponents. Prove that the progressions are proportional (that is, there is $k$ such that $a_{n}=kb_{n}$ for any $n$). [i]Proposed by A. Golovanov[/i]

2021 BMT, T2

Compute the radius of the largest circle that fits entirely within a unit cube.

2016 Purple Comet Problems, 21

Tags:
On equilateral $\triangle{ABC}$ point D lies on BC a distance 1 from B, point E lies on AC a distance 1 from C, and point F lies on AB a distance 1 from A. Segments AD, BE, and CF intersect in pairs at points G, H, and J which are the vertices of another equilateral triangle. The area of $\triangle{ABC}$ is twice the area of $\triangle{GHJ}$. The side length of $\triangle{ABC}$ can be written $\frac{r+\sqrt{s}}{t}$, where r, s, and t are relatively prime positive integers. Find $r + s + t$. [center][img]https://i.snag.gy/TKU5Fc.jpg[/img][/center]

2007 Portugal MO, 5

Rua do Antonio has $100$ houses numbered from $1$ to $100$. Any house numbered with the difference between the numbers of two houses of the same color is a different color. Prove that on Rua do Antonio there are houses of at least five different colors.

LMT Guts Rounds, 11

Tags:
Carl, James, Saif, and Ted play several games of two-player For The Win on the Art of Problem Solving website. If, among these games, Carl wins $5$ and loses $0,$ James wins $4$ and loses $2,$ Saif wins $1$ and loses $6,$ and Ted wins $4,$ how many games does Ted lose?

2010 Belarus Team Selection Test, 3.1

Let $I$ be an incenter of a triangle $ABC, A_1,B_1,C_1$ be intersection points of the circumcircle of the triangle $ABC$ and the lines $AI, BI, Cl$ respectively. Prove that a) $\frac{AI}{IA_1}+ \frac{BI}{IB_1}+ \frac{CI}{IC_1}\ge 3$ b) $AI \cdot BI \cdot CI \le I_1A_1\cdot I_2B_1 \cdot I_1C_1$ (D. Pirshtuk)

2009 AIME Problems, 13

Let $ A$ and $ B$ be the endpoints of a semicircular arc of radius $ 2$. The arc is divided into seven congruent arcs by six equally spaced points $ C_1,C_2,\ldots,C_6$. All chords of the form $ \overline{AC_i}$ or $ \overline{BC_i}$ are drawn. Let $ n$ be the product of the lengths of these twelve chords. Find the remainder when $ n$ is divided by $ 1000$.

2014 Indonesia MO Shortlist, G6

Given an $ABC$ acute triangle with $O$ the center of the circumscribed circle. Suppose that $\omega$ is a circle that is tangent to the line $AO$ at point $A$ and also tangent to the line $BC$. Prove that $\omega$ is also tangent to the circumcircle of the triangle $BOC$.

2007 Princeton University Math Competition, 6

If $a, b, c$ are real numbers such that $a+b+c=6$ and $ab+bc+ca = 9$, find the sum of all possible values of the expression $\lfloor a \rfloor + \lfloor b \rfloor + \lfloor c \rfloor$.

2021 Durer Math Competition Finals, 6

Bertalan thought about a $4$-digit positive number. Then he draw a simple graph on $4$ vertices and wrote the digits of the number to the vertices of the graph in such a way that every vertex received exactly the degree of the vertex. In how many ways could he think about? In a simple graph every edge connects two different vertices, and between two vertices at most one edge can go.

1950 AMC 12/AHSME, 39

Tags:
Given the series $ 2\plus{}1\plus{}\frac {1}{2}\plus{}\frac {1}{4}\plus{}...$ and the following five statements: (1) the sum increases without limit (2) the sum decreases without limit (3) the difference between any term of the sequence and zero can be made less than any positive quantity no matter how small (4) the difference between the sum and 4 can be made less than any positive quantity no matter how small (5) the sum approaches a limit Of these statments, the correct ones are: $\textbf{(A)}\ \text{Only }3 \text{ and }4\qquad \textbf{(B)}\ \text{Only }5 \qquad \textbf{(C)}\ \text{Only }2\text{ and }4 \qquad \textbf{(D)}\ \text{Only }2,3\text{ and }4 \qquad \textbf{(E)}\ \text{Only }4\text{ and }5$

2014 Canadian Mathematical Olympiad Qualification, 2

Alphonse and Beryl play a game involving $n$ safes. Each safe can be opened by a unique key and each key opens a unique safe. Beryl randomly shuffles the $n$ keys, and after placing one key inside each safe, she locks all of the safes with her master key. Alphonse then selects $m$ of the safes (where $m < n$), and Beryl uses her master key to open just the safes that Alphonse selected. Alphonse collects all of the keys inside these $m$ safes and tries to use these keys to open up the other $n - m$ safes. If he can open a safe with one of the $m$ keys, he can then use the key in that safe to try to open any of the remaining safes, repeating the process until Alphonse successfully opens all of the safes, or cannot open any more. Let $P_m(n)$ be the probability that Alphonse can eventually open all $n$ safes starting from his initial selection of $m$ keys. (a) Show that $P_2(3) = \frac23$. (b) Prove that $P_1(n) = \frac1n$. (c) For all integers $n \geq 2$, prove that $$P_2(n) = \frac2n \cdot P_1(n-1) + \frac{n-2}{n} \cdot P_2(n-1).$$ (d) Determine a formula for $P_2 (n)$.

1961 Leningrad Math Olympiad, grade 8

[b]8.1 [/b] Construct a quadrilateral using side lengths and distances between the midpoints of the diagonals. [b]8.2[/b] It is known that $a,b$ and $\sqrt{a}+\sqrt{b} $ are rational numbers. Prove that then $\sqrt{a}$, $\sqrt{b} $ are rational. [b]8.3 / 9.2[/b] Solve equation $x^3 - [x]=3$ [b]8.4[/b] Prove that if in a triangle the angle bisector of the vertex, bisects the angle between the median and the altitude, then the triangle either isosceles or right. . [b]8.5[/b] Given $n$ numbers $x_1, x_2, . . . , x_n$, each of which is equal to $+1$ or $-1$. At the same time $$x_1x_2 + x_2x_3 + . . . + x_{n-1}x_n + x_nx_1 = 0 .$$ Prove that $n$ is divisible by $4$. [b]8.6[/b] There are $n$ points marked on the circle, and it is known that for of any two, one of the arcs connecting them has a measure less than $120^0$.Prove that all points lie on an arc of size $120^0$. PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3983442_1961_leningrad_math_olympiad]here[/url].

2023 Azerbaijan JBMO TST, 3

Tags: geometry
Let $ABC$ be a triangle and let $\Omega$ denote the circumcircle of $ABC$. The foot of altitude from $A$ to $BC$ is $D$. The foot of altitudes from $D$ to $AB$ and $AC$ are $K;L$ , respectively. Let $KL$ intersect $\Omega$ at $X;Y$, and let $AD$ intersect $\Omega$ at $Z$. Prove that $D$ is the incenter of triangle $XYZ$

2021 Austrian MO Regional Competition, 2

Let $ABC$ be an isosceles triangle with $AC = BC$ and circumcircle $k$. The point $D$ lies on the shorter arc of $k$ over the chord $BC$ and is different from $B$ and $C$. Let $E$ denote the intersection of $CD$ and $AB$. Prove that the line through $B$ and $C$ is a tangent of the circumcircle of the triangle $BDE$. (Karl Czakler)

1971 Czech and Slovak Olympiad III A, 1

Let $a,b,c$ real numbers. Show that there are non-negative $x,y,z,xyz\neq0$ such that \begin{align*} cy-bz &\ge 0, \\ az-cx &\ge 0, \\ bx-ay &\ge 0. \end{align*}

2024 CMIMC Algebra and Number Theory, 10

Tags: algebra
There exists a unique pair of polynomials $(P(x),Q(x))$ such that \begin{align*} P(Q(x))&= P(x)(x^2-6x+7) \\ Q(P(x))&= Q(x)(x^2-3x-2) \end{align*} Compute $P(10)+Q(-10)$. [i]Proposed by Connor Gordon[/i]

2018 India IMO Training Camp, 2

Tags: algebra , sequence
Let $n\ge 2$ be a natural number. Let $a_1\le a_2\le a_3\le \cdots \le a_n$ be real numbers such that $a_1+a_2+\cdots +a_n>0$ and $n(a_1^2+a_2^2+\cdots +a_n^2)=2(a_1+a_2+\cdots +a_n)^2.$ If $m=\lfloor n/2\rfloor+1$, the smallest integer larger than $n/2$, then show that $a_m>0.$

1976 Euclid, 9

Source: 1976 Euclid Part A Problem 9 ----- A circle has an inscribed triangle whose sides are $5\sqrt{3}$, $10\sqrt{3}$, and $15$. The measure of the angle subtended at the centre of the circle by the shortest side is $\textbf{(A) } 30 \qquad \textbf{(B) } 45 \qquad \textbf{(C) } 60 \qquad \textbf{(D) } 90 \qquad \textbf{(E) } \text{none of these}$

2023 China Team Selection Test, P18

Find the greatest constant $\lambda$ such that for any doubly stochastic matrix of order 100, we can pick $150$ entries such that if the other $9850$ entries were replaced by $0$, the sum of entries in each row and each column is at least $\lambda$. Note: A doubly stochastic matrix of order $n$ is a $n\times n$ matrix, all entries are nonnegative reals, and the sum of entries in each row and column is equal to 1.

2002 All-Russian Olympiad, 4

There are 2002 towns in a kingdom. Some of the towns are connected by roads in such a manner that, if all roads from one city closed, one can still travel between any two cities. Every year, the kingdom chooses a non-self-intersecting cycle of roads, founds a new town, connects it by roads with each city from the chosen cycle, and closes all the roads from the original cycle. After several years, no non-self-intersecting cycles remained. Prove that at that moment there are at least 2002 towns, exactly one road going out from each of them.

2022 JHMT HS, 2

Erica intends to construct a subset $T$ of $S=\{ I,J,K,L,M,N \}$, but if she is unsure about including an element $x$ of $S$ in $T$, she will write $x$ in bold and include it in $T$. For example, $\{ I,J \},$ $\{ J,\mathbf{K},L \},$ and $\{ \mathbf{I},\mathbf{J},\mathbf{M},\mathbf{N} \}$ are valid examples of $T$, while $\{ I,J,\mathbf{J},K \}$ is not. Find the total number of such subsets $T$ that Erica can construct.

1997 AMC 12/AHSME, 11

Tags:
In the sixth, seventh, eighth, and ninth basketball games of the season, a player scored $ 23$, $ 14$, $ 11$, and $ 20$ points, respectively. Her points-per-game average was higher after nine games than it was after the first five games. If her average after ten games was greater than $ 18$, what is the least number of points she could have scored in the tenth game? $ \textbf{(A)}\ 26\qquad \textbf{(B)}\ 27\qquad \textbf{(C)}\ 28\qquad \textbf{(D)}\ 29\qquad \textbf{(E)}\ 30$