This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2022 Romania National Olympiad, P4

Let $X$ be a set with $n\ge 2$ elements. Define $\mathcal{P}(X)$ to be the set of all subsets of $X$. Find the number of functions $f:\mathcal{P}(X)\mapsto \mathcal{P}(X)$ such that $$|f(A)\cap f(B)|=|A\cap B|$$ whenever $A$ and $B$ are two distinct subsets of $X$. [i] (Sergiu Novac)[/i]

2018 Bulgaria National Olympiad, 5.

Given a polynomial $P(x)=a_{d}x^{d}+ \ldots +a_{2}x^{2}+a_{0}$ with positive integers for coefficients and degree $d\geq 2$. Consider the sequence defined by $$b_{1}=a_{0} ,b_{n+1}=P(b_{n}) $$ for $n \geq 1$ . Prove that for all $n \geq 2$ there exists a prime $p$ such that $p$ divides $b_{n}$ but does not divide $b_{1}b_{2} \ldots b_{n-1}$.

2007 All-Russian Olympiad, 3

Tags: rhombus , geometry , ratio
Given a rhombus $ABCD$. A point $M$ is chosen on its side $BC$. The lines, which pass through $M$ and are perpendicular to $BD$ and $AC$, meet line $AD$ in points $P$ and $Q$ respectively. Suppose that the lines $PB,QC,AM$ have a common point. Find all possible values of a ratio $\frac{BM}{MC}$. [i]S. Berlov, F. Petrov, A. Akopyan[/i]

2018 Swedish Mathematical Competition, 1

Let the $ABCD$ be a quadrilateral without parallel sides, inscribed in a circle. Let $P$ and $Q$ be the intersection points between the lines containing the quadrilateral opposite sides. Show that the bisectors to the angles at $P$ and $Q$ are parallel to the bisectors of the angles at the intersection point of the diagonals of the quadrilateral.

2014 BMT Spring, 3

The Professor chooses to assign homework problems from a set of problems labeled $1$ to $100$, inclusive. He will not assign two problems whose numbers share a common factor greater than $1$. If the Professor chooses to assign the maximum number of homework problems possible, how many different combinations of problems can he assign?

2002 AMC 10, 10

Tags: ratio
Let $a$ and $b$ be distinct real numbers for which \[\dfrac ab+\dfrac{a+10b}{b+10a}=2.\] Find $\dfrac ab$. $\textbf{(A) }0.6\qquad\textbf{(B) }0.7\qquad\textbf{(C) }0.8\qquad\textbf{(D) }0.9\qquad\textbf{(E) }1$

2015 BMT Spring, 18

Tags: algebra
Evaluate $\sum_{n=1}^{\infty}\frac{1}{(2n - 1)(3n - 1)}$.

2024 India IMOTC, 6

At an IMOTC party, all people have pairwise distinct ages. Some pairs of people are friends and friendship is mutual. Call a person [i]junior[/i] if they are younger than all their friends, and [i]senior[/i] if they are older than all their friends. A person with no friends is both [i]junior[/i] and [i]senior[/i]. A sequence of pairwise distinct people $A_1, \dots, A_m$ is called [i]photogenic[/i] if: 1. $A_1$ is [i]junior[/i], 2. $A_m$ is [i]senior[/i], and 3. $A_i$ and $A_{i+1}$ are friends, and $A_{i+1}$ is older than $A_i$ for all $1 \leq i \leq m-1$. Let $k$ be a positive integer such that for every [i]photogenic[/i] sequence $A_1, \dots, A_m$, $m$ is not divisible by $k$. Prove that the people at the party can be partitioned into $k$ groups so that no two people in the same group are friends. [i]Proposed by Shantanu Nene[/i]

2021 Miklós Schweitzer, 10

Consider a coin with a head toss probability $p$ where $0 <p <1$ is fixed. Toss the coin several times, the tosses should be independent of each other. Denote by $A_i$ the event that of the $i$-th, $(i + 1)$-th, $\ldots$ , the $(i+m-1)$-th throws, exactly $T$ is the tail. For $T = 1$, calculate the conditional probability $\mathbb{P}(\bar{A_2} \bar{A_3} \cdots \bar{A_m} | A_1)$, and for $T = 2$, prove that $\mathbb{P}(\bar{A_2} \bar{A_3} \cdots \bar{A_m} | A_1)$ has approximation in the form $a+ \tfrac{b}{m} + \mathcal{O}(p^m)$ as $m \to \infty$.

2017 IFYM, Sozopol, 4

Prove that, if there exist natural numbers $a_1,a_2…a_{2017}$ for which the product $(a_1^{2017}+a_2 )(a_2^{2017}+a_3 )…(a_{2016}^{2017}+a_{2017})(a_{2017}^{2017}+a_1)$ is a $k$-th power of a prime number, then $k=2017$ or $k\geq 2017.2018$.

2023 Assam Mathematics Olympiad, 9

Tags:
What is the smallest positive integer having $24$ positive divisors?

1999 VJIMC, Problem 3

Tags: geometry
Let $A_1,\ldots,A_n$ be points of an ellipsoid with center $O$ in $\mathbb R^n$ such that $OA_i$, for $i=1,\ldots,n$, are mutually orthogonal. Prove that the distance of the point $O$ from the hyperplane $A_1A_2\ldots A_n$ does not depend on the choice of the points $A_1,\ldots,A_n$.

2014 All-Russian Olympiad, 3

If the polynomials $f(x)$ and $g(x)$ are written on a blackboard then we can also write down the polynomials $f(x)\pm g(x)$, $f(x)g(x)$, $f(g(x))$ and $cf(x)$, where $c$ is an arbitrary real constant. The polynomials $x^3-3x^2+5$ and $x^2-4x$ are written on the blackboard. Can we write a nonzero polynomial of form $x^n-1$ after a finite number of steps?

1995 Romania Team Selection Test, 3

The altitudes of a triangle have integer length and its inradius is a prime number. Find all possible values of the sides of the triangle.

2019 Polish Junior MO Finals, 5.

In the every cell of the board $5\times5$ there is one of the numbers: $-1$, $0$, $1$. It is true that in every $2 \times 2$ square there are three numbers summing up to $0$. Determine the maximal sum of all numbers in a board.

2014 Sharygin Geometry Olympiad, 5

A triangle with angles of $30, 70$ and $80$ degrees is given. Cut it by a straight line into two triangles in such a way that an angle bisector in one of these triangles and a median in the other one drawn from two endpoints of the cutting segment are parallel to each other. (It suffices to find one such cutting.) (A. Shapovalov )

2008 Cono Sur Olympiad, 4

What is the largest number of cells that can be colored in a $7\times7$ table in such a way that any $2\times2$ subtable has at most 2 colored cells?

1997 Israel National Olympiad, 5

The natural numbers $a_1,a_2,...,a_n, n \ge 12$, are smaller than $9n^2$ and pairwise coprime. Show that at least one of these numbers is prime.

2020 Malaysia IMONST 1, 8

Given a rectangle $ABCD$ with a point $P$ inside it. It is known that $PA = 17, PB = 15,$ and $PC = 6.$ What is the length of $PD$?

2001 National Olympiad First Round, 7

Tags:
How many ordered triples of positive integers $(a,b,c)$ are there such that $(2a+b)(2b+a)=2^c$? $ \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \text{None of the preceding} $

2019 Romania National Olympiad, 1

Let be a point $ P $ in the interior of a triangle $ ABC $ such that $ BP=AC, M $ be the middlepoint of the segment $ AP, R $ be the middlepoint of $ BC $ and $ E $ be the intersection of $ BP $ with $ AC. $ Prove that the bisector of $ \angle BEA $ is perpendicular on $ MR $

2004 AMC 10, 8

Tags:
A game is played with tokens according to the following rule. In each round, the player with the most tokens gives one token to each of the other players and also places one token into a discard pile. The game ends when some player runs out of tokens. Players $ A$, $ B$, and $ C$ start with $ 15$, $ 14$, and $ 13$ tokens, respectively. How many rounds will there be in the game? $ \textbf{(A)}\ 36 \qquad \textbf{(B)}\ 37 \qquad \textbf{(C)}\ 38 \qquad \textbf{(D)}\ 39 \qquad \textbf{(E)}\ 40$

2006 Hungary-Israel Binational, 1

If natural numbers $ x$, $ y$, $ p$, $ n$, $ k$ with $ n > 1$ odd and $ p$ an odd prime satisfy $ x^n \plus{} y^n \equal{} p^k$, prove that $ n$ is a power of $ p$.

2012 Purple Comet Problems, 9

Points $E$ and $F$ lie inside rectangle $ABCD$ with $AE=DE=BF=CF=EF$. If $AB=11$ and $BC=8$, find the area of the quadrilateral $AEFB$.

2019 IMO Shortlist, N5

Let $a$ be a positive integer. We say that a positive integer $b$ is [i]$a$-good[/i] if $\tbinom{an}{b}-1$ is divisible by $an+1$ for all positive integers $n$ with $an \geq b$. Suppose $b$ is a positive integer such that $b$ is $a$-good, but $b+2$ is not $a$-good. Prove that $b+1$ is prime.