This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2020 Bulgaria EGMO TST, 1

Tags: inequalities
The positive integers $a$, $p$, $q$ and $r$ are greater than $1$ and are such that $p$ divides $aqr+1$, $q$ divides $apr+1$ and $r$ divides $apq+1$. Prove that: a) There are infinitely many such quadruples $(a,p,q,r)$. b) For each such quadruple we have $a\geq \frac{pqr-1}{pq+qr+rp}$.

2024-25 IOQM India, 18

Tags:
Let $p,q$ be two-digit number neither of which are divisible by $10$. Let $r$ be the four-digit number by putting the digits of $p$ followed by the digits of $q$ (in order). As $p,q$ very, a computer prints $r$ on the screen if $\gcd(p,q) = 1$ and $p+q$ divides $r$. Suppose that the largest number that is printed by the computer is $N$. Determine the number formed by the last two digits of $N$ (in the same order).

2017 QEDMO 15th, 12

Tags: integer , algebra
Let $a$ be a real number such that $\left(a + \frac{1}{a}\right)^2=11$. For which $n\in N$ is $a^n + \frac{1}{a^n}$ an integer? Does this depend on the exact value of $a$?

2006 All-Russian Olympiad, 4

Given a triangle $ ABC$. The angle bisectors of the angles $ ABC$ and $ BCA$ intersect the sides $ CA$ and $ AB$ at the points $ B_1$ and $ C_1$, and intersect each other at the point $ I$. The line $ B_1C_1$ intersects the circumcircle of triangle $ ABC$ at the points $ M$ and $ N$. Prove that the circumradius of triangle $ MIN$ is twice as long as the circumradius of triangle $ ABC$.

2019 Teodor Topan, 3

Let be a natural number $ m\ge 2. $ [b]a)[/b] Let be $ m $ pairwise distinct rational numbers. Prove that there is an ordering of these numbers such that these are terms of an arithmetic progression. [b]b)[/b] Given that for any $ m $ pairwise distinct real numbers there is an ordering of them such that they are terms of an arithmetic sequence, determine the number $ m. $ [i]Bogdan Blaga[/i]

2002 Moldova National Olympiad, 4

Tags: inequalities
At least two of the nonnegative real numbers $ a_1,a_2,...,a_n$ aer nonzero. Decide whether $ a$ or $ b$ is larger if $ a\equal{}\sqrt[2002]{a_1^{2002}\plus{}a_2^{2002}\plus{}\ldots\plus{}a_n^{2002}}$ and $ b\equal{}\sqrt[2003]{a_1^{2003}\plus{}a_2^{2003}\plus{}\ldots\plus{}a_n^{2003} }$

2014 NIMO Summer Contest, 4

Let $n$ be a positive integer. Determine the smallest possible value of $1-n+n^2-n^3+\dots+n^{1000}$. [i]Proposed by Evan Chen[/i]

2013 Putnam, 6

Define a function $w:\mathbb{Z}\times\mathbb{Z}\to\mathbb{Z}$ as follows. For $|a|,|b|\le 2,$ let $w(a,b)$ be as in the table shown; otherwise, let $w(a,b)=0.$ \[\begin{array}{|lr|rrrrr|}\hline &&&&b&&\\ &w(a,b)&-2&-1&0&1&2\\ \hline &-2&-1&-2&2&-2&-1\\ &-1&-2&4&-4&4&-2\\ a&0&2&-4&12&-4&2\\ &1&-2&4&-4&4&-2\\ &2&-1&-2&2&-2&-1\\ \hline\end{array}\] For every finite subset $S$ of $\mathbb{Z}\times\mathbb{Z},$ define \[A(S)=\sum_{(\mathbf{s},\mathbf{s'})\in S\times S} w(\mathbf{s}-\mathbf{s'}).\] Prove that if $S$ is any finite nonempty subset of $\mathbb{Z}\times\mathbb{Z},$ then $A(S)>0.$ (For example, if $S=\{(0,1),(0,2),(2,0),(3,1)\},$ then the terms in $A(S)$ are $12,12,12,12,4,4,0,0,0,0,-1,-1,-2,-2,-4,-4.$)

2023 Estonia Team Selection Test, 5

We say that distinct positive integers $n, m$ are $friends$ if $\vert n-m \vert$ is a divisor of both ${}n$ and $m$. Prove that, for any positive integer $k{}$, there exist $k{}$ distinct positive integers such that any two of these integers are friends.

2020 Brazil Undergrad MO, Problem 5

Let $N$ a positive integer. In a spaceship there are $2 \cdot N$ people, and each two of them are friends or foes (both relationships are symmetric). Two aliens play a game as follows: 1) The first alien chooses any person as she wishes. 2) Thenceforth, alternately, each alien chooses one person not chosen before such that the person chosen on each turn be a friend of the person chosen on the previous turn. 3) The alien that can't play in her turn loses. Prove that second player has a winning strategy [i]if, and only if[/i], the $2 \cdot N$ people can be divided in $N$ pairs in such a way that two people in the same pair are friends.

2016 PUMaC Combinatorics A, 7

Tags: princeton , college
The Dinky is a train connecting Princeton to the outside world. It runs on an odd schedule: the train arrive once every one-hour block at some uniformly random time (once at a random time between $\text{9am}$ and $\text{10am}$, once at a random time between $\text{10am}$ and $\text{11am}$, and so on). One day, Emilia arrives at the station, at some uniformly random time, and does not know the time. She expects to wait for $y$ minutes for the next train to arrive. After waiting for an hour, a train has still not come. She now expects to wait for $z$ minutes. Find $yz$.

2024 IMC, 8

Define the sequence $x_1,x_2,\dots$ by the initial terms $x_1=2, x_2=4$, and the recurrence relation \[x_{n+2}=3x_{n+1}-2x_n+\frac{2^n}{x_n} \quad \text{for} \quad n \ge 1.\] Prove that $\lim_{n \to \infty} \frac{x_n}{2^n}$ exists and satisfies \[\frac{1+\sqrt{3}}{2} \le \lim_{n \to \infty} \frac{x_n}{2^n} \le \frac{3}{2}.\]

2005 Junior Balkan Team Selection Tests - Romania, 1

Let $\mathcal{C}_1(O_1)$ and $\mathcal{C}_2(O_2)$ be two circles which intersect in the points $A$ and $B$. The tangent in $A$ at $\mathcal{C}_2$ intersects the circle $\mathcal{C}_1$ in $C$, and the tangent in $A$ at $\mathcal{C}_1$ intersects $\mathcal{C}_2$ in $D$. A ray starting from $A$ and lying inside the $\angle CAD$ intersects the circles $\mathcal{C}_1$, $\mathcal{C}_2$ in the points $M$ and $N$ respectively, and the circumcircle of $\triangle ACD$ in $P$. Prove that $AM=NP$.

PEN H Problems, 6

Show that there are infinitely many pairs $(x, y)$ of rational numbers such that $x^3 +y^3 =9$.

1993 All-Russian Olympiad Regional Round, 11.5

The expression $ x^3 \plus{} . . . x^2 \plus{} . . . x \plus{} ... \equal{} 0$ is written on the blackboard. Two pupils alternately replace the dots by real numbers. The first pupil attempts to obtain an equation having exactly one real root. Can his opponent spoil his efforts?

2010 Tournament Of Towns, 5

For each side of a given pentagon, divide its length by the total length of all other sides. Prove that the sum of all the fractions obtained is less than 2.

1997 Moscow Mathematical Olympiad, 5

Tags:
In the rhombus $ABCD,$ the measure of $\angle{B}=40^{\circ}, E$ is the midpoint of $BC,$ and $F$ is the base of the perpendicular dropped from $A$ on $DE.$ Find the measure of $\angle{DFC}.$

2005 Flanders Math Olympiad, 1

For all positive integers $n$, find the remainder of $\dfrac{(7n)!}{7^n \cdot n!}$ upon division by 7.

KoMaL A Problems 2024/2025, A. 906

Tags: geometry
Let $\mathcal{V}_c$ denote the infinite parallel ruler with the parallel edges being at distance $c$ from each other. The following construction steps are allowed using ruler $\mathcal V_c$: [list] [*] the line through two given points; [*] line $\ell'$ parallel to a given line $\ell $at distance $c$ (there are two such lines, both of which can be constructed using this step); [*] for given points $A$ and $B$ with $|AB|\ge c$ two parallel lines at distance $c$ such that one of them passes through $A$, and the other one passes through $B$ (if $|AB|>c$, there exists two such pairs of parallel lines, and both can be constructed using this step). [/list] On the perimeter of a circular piece of paper three points are given that form a scalene triangle. Let $n$ be a given positive integer. Prove that based on the three points and $n$ there exists $C>0$ such that for any $0<c\le C$ it is possible to construct $n$ points using only $\mathcal V_c$ on one of the excircles of the triangle. [i]We are not allowed to draw anything outside our circular paper. We can construct on the boundary of the paper; it is allowed to take the intersection point of a line with the boundary of the paper.[/i] [i]Proposed by Áron Bán-Szabó[/i]

1989 Putnam, B1

A dart, thrown at random, hits a square target. Assuming that any two parts of the target of equal area are equall likely to be hit, find the probability that hte point hit is nearer to the center than any edge.

2014 China Team Selection Test, 2

Let $A_1A_2...A_{101}$ be a regular $101$-gon, and colour every vertex red or blue. Let $N$ be the number of obtuse triangles satisfying the following: The three vertices of the triangle must be vertices of the $101$-gon, both the vertices with acute angles have the same colour, and the vertex with obtuse angle have different colour. $(1)$ Find the largest possible value of $N$. $(2)$ Find the number of ways to colour the vertices such that maximum $N$ is acheived. (Two colourings a different if for some $A_i$ the colours are different on the two colouring schemes).

2004 China Girls Math Olympiad, 2

Tags: inequalities
Let $ a, b, c$ be positive reals. Find the smallest value of \[ \frac {a \plus{} 3c}{a \plus{} 2b \plus{} c} \plus{} \frac {4b}{a \plus{} b \plus{} 2c} \minus{} \frac {8c}{a \plus{} b \plus{} 3c}. \]

2024 Moldova EGMO TST, 9

Given a convex quadrilateral $ KLMN $, in which $ \angle NKL = {{90} ^ {\circ}} $. Let $ P $ be the midpoint of the segment $ LM $. It turns out that $ \angle KNL = \angle MKP $. Prove that $ \angle KNM = \angle LKP $.

2023 Moldova Team Selection Test, 4

Polynomials $(P_n(X))_{n\in\mathbb{N}}$ are defined as: $$P_0(X)=0, \quad P_1(X)=X+2,$$ $$P_n(X)=P_{n-1}(X)+3P_{n-1}(X)\cdot P_{n-2}(X)+P_{n-2}(X), \quad (\forall) n\geq2.$$ Show that if $ k $ divides $m$ then $P_k(X)$ divides $P_m(X).$

2003 JBMO Shortlist, 6

Tags: inequalities
Parallels to the sides of a triangle passing through an interior point divide the inside of a triangle into $6$ parts with the marked areas as in the figure. Show that $\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\ge \frac{3}{2}$ [img]https://cdn.artofproblemsolving.com/attachments/a/a/b0a85df58f2994b0975b654df0c342d8dc4d34.png[/img]