This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2014 SDMO (Middle School), 1

Tags:
Find the smallest positive three-digit integer $n$ such that $3^n+4^n$ is divisible by $5$.

2012-2013 SDML (Middle School), 9

Tags: geometry
Find the area of the equilateral triangle that includes vertices at $\left(-3,5\right)$ and $\left(-5,9\right)$. $\text{(A) }3\sqrt{3}\qquad\text{(B) }10\sqrt{3}\qquad\text{(C) }\sqrt{30}\qquad\text{(D) }2\sqrt{15}\qquad\text{(E) }5\sqrt{3}$

2025 Harvard-MIT Mathematics Tournament, 24

Tags: guts
For any integer $x,$ let $$f(x)=100!\left(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots+\frac{x^{100}}{100!}\right).$$ A positive integer $a$ is chosen such that $f(a)-20$ is divisible by $101^2.$ Compute the remainder when $f(x+101)$ is divided by $101^2.$

LMT Team Rounds 2010-20, 2020.S14

Tags:
Let $\triangle ABC$ be a triangle such that $AB=40$ and $AC=30.$ Points $X$ and $Y$ are on the segment $AB$ and $BC,$ respectively such that $AX:BX=3:2$ and $BY:CY=1:4.$ Given that $XY=12,$ the area of $\triangle ABC$ can be written as $a\sqrt{b}$ where $a$ and $b$ are positive integers and $b$ is squarefree. Compute $a+b.$

2016 Purple Comet Problems, 8

Tags:
The map below shows an east/west road connecting the towns of Acorn, Centerville, and Midland, and a north/south road from Centerville to Drake. The distances from Acorn to Centerville, from Centerville to Midland, and from Centerville to Drake are each 60 kilometers. At noon Aaron starts at Acorn and bicycles east at 17 kilometers per hour, Michael starts at Midland and bicycles west at 7 kilometers per hour, and David starts at Drake and bicycles at a constant rate in a straight line across an open field. All three bicyclists arrive at exactly the same time at a point along the road from Centerville to Midland. Find the number of kilometers that David bicycles. For the map go to http://www.purplecomet.org/welcome/practice

2024 AMC 12/AHSME, 6

Tags:
The national debt of the United States is on track to reach $5 \cdot 10^{13}$ dollars by $2033$. How many digits does this number of dollars have when written as a numeral in base $5$? (The approximation of $\log_{10} 5$ as $0.7$ is sufficient for this problem.) $ \textbf{(A) }18 \qquad \textbf{(B) }20 \qquad \textbf{(C) }22 \qquad \textbf{(D) }24 \qquad \textbf{(E) }26 \qquad $

2020 Centroamerican and Caribbean Math Olympiad, 3

Find all the functions $f: \mathbb{Z}\to \mathbb{Z}$ satisfying the following property: if $a$, $b$ and $c$ are integers such that $a+b+c=0$, then $$f(a)+f(b)+f(c)=a^2+b^2+c^2.$$

2002 May Olympiad, 3

In a triangle $ABC$, right in $A$ and isosceles, let $D$ be a point on the side $AC$ ($A \ne D \ne C$) and $E$ be the point on the extension of $BA$ such that the triangle $ADE$ is isosceles. Let $P$ be the midpoint of segment $BD$, $R$ be the midpoint of the segment $CE$ and $Q$ the intersection point of $ED$ and $BC$. Prove that the quadrilateral $ARQP$ is a square.

2015 Latvia Baltic Way TST, 7

Two circle $\Gamma_1$ and $\Gamma_2$ intersect at points $A$ and $B$, point $P$ is not on the line $AB$. Line $AP$ intersects again $\Gamma_1$ and $\Gamma_2$ at points $K$ and $L$ respectively, line $BP$ intersects again $\Gamma_1$ and $\Gamma_2$ at points $M$ and $N$ respectively and all the points mentioned so far are different. The centers of the circles circumscribed around the triangles $KMP$ and $LNP$ are $O_1$ and $O_2$ respectively. Prove that $O_1O_2$ is perpendicular to $AB$.

2014 Postal Coaching, 2

Let $d(n)$ be the number of positive divisors of a natural number $n$.Find all $k\in \mathbb{N}$ such that there exists $n\in \mathbb{N}$ with $d(n^2)/d(n)=k$.

2014 Contests, 4

The sum of two prime numbers is $85$. What is the product of these two prime numbers? $\textbf{(A) }85\qquad\textbf{(B) }91\qquad\textbf{(C) }115\qquad\textbf{(D) }133\qquad \textbf{(E) }166$

1967 German National Olympiad, 3

Prove the following theorem: If $n > 2$ is a natural number, $a_1, ..., a_n$ are positive real numbers and becomes $\sum_{i=1}^n a_i = s$, then the following holds $$\sum_{i=1}^n \frac{a_i}{s - a_i} \ge \frac{n}{n - 1}$$

2010 Indonesia TST, 4

Prove that for all integers $ m$ and $ n$, the inequality \[ \dfrac{\phi(\gcd(2^m \plus{} 1,2^n \plus{} 1))}{\gcd(\phi(2^m \plus{} 1),\phi(2^n \plus{} 1))} \ge \dfrac{2\gcd(m,n)}{2^{\gcd(m,n)}}\] holds. [i]Nanang Susyanto, Jogjakarta [/i]

2003 Bulgaria National Olympiad, 2

Let $a,b,c$ be rational numbers such that $a+b+c$ and $a^2+b^2+c^2$ are [b]equal[/b] integers. Prove that the number $abc$ can be written as the ratio of a perfect cube and a perfect square which are relatively prime.

2011 India Regional Mathematical Olympiad, 3

Let $a,b,c>0.$ If $\frac 1a,\frac 1b,\frac 1c$ are in arithmetic progression, and if $a^2+b^2,b^2+c^2,c^2+a^2$ are in geometric progression, show that $a=b=c.$

2000 Rioplatense Mathematical Olympiad, Level 3, 2

In a triangle $ABC$, points $D, E$ and $F$ are considered on the sides $BC, CA$ and $AB$ respectively, such that the areas of the triangles $AFE, BFD$ and $CDE$ are equal. Prove that $$\frac{(DEF) }{ (ABC)} \ge \frac{1}{4}$$ Note: $(XYZ)$ is the area of triangle $XYZ$.

1991 Denmark MO - Mohr Contest, 1

Tags: coordinates
Describe the amount of points $P(x, y)$ that are twice as far apart $A(3, 0)$ as to $0(0, 0)$.

2018 Junior Regional Olympiad - FBH, 3

Tags: digit , 4 digit
Find all $4$ digit number $\overline{abcd}$ such that $4\cdot \overline{abcd}+30=\overline{dcba}$

1957 AMC 12/AHSME, 6

An open box is constructed by starting with a rectangular sheet of metal $ 10$ in. by $ 14$ in. and cutting a square of side $ x$ inches from each corner. The resulting projections are folded up and the seams welded. The volume of the resulting box is: $ \textbf{(A)}\ 140x \minus{} 48x^2 \plus{} 4x^3 \qquad \textbf{(B)}\ 140x \plus{} 48x^2 \plus{} 4x^3\qquad \\\textbf{(C)}\ 140x \plus{} 24x^2 \plus{} x^3\qquad \textbf{(D)}\ 140x \minus{} 24x^2 \plus{} x^3\qquad \textbf{(E)}\ \text{none of these}$

2021 Israel National Olympiad, P5

Tags: algebra
Solve the following equation in positive numbers. $$(2a+1)(2a^2+2a+1)(2a^4+4a^3+6a^2+4a+1)=828567056280801$$

1996 AMC 8, 8

Tags:
Points $A$ and $B$ are 10 units apart. Points $B$ and $C$ are 4 units apart. Points $C$ and $D$ are 3 units apart. If $A$ and $D$ are as close as possible, then the number of units between them is $\text{(A)}\ 0 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 11 \qquad \text{(E)}\ 17$

2016 Harvard-MIT Mathematics Tournament, 5

Tags:
Patrick and Anderson are having a snowball fight. Patrick throws a snowball at Anderson which is shaped like a sphere with a radius of $10$ centimeters. Anderson catches the snowball and uses the snow from the snowball to construct snowballs with radii of $4$ centimeters. Given that the total volume of the snowballs that Anderson constructs cannot exceed the volume of the snowball that Patrick threw, how many snowballs can Anderson construct?

1993 China National Olympiad, 5

$10$ students bought some books in a bookstore. It is known that every student bought exactly three kinds of books, and any two of them shared at least one kind of book. Determine, with proof, how many students bought the most popular book at least? (Note: the most popular book means most students bought this kind of book)

2014 Contests, 2

Find all $f$ functions from real numbers to itself such that for all real numbers $x,y$ the equation \[f(f(y)+x^2+1)+2x=y+(f(x+1))^2\] holds.

2014 Iran Team Selection Test, 4

Find all functions $f:\mathbb{R}^{+}\rightarrow \mathbb{R}^{+}$ such that $x,y\in \mathbb{R}^{+},$ \[ f\left(\frac{y}{f(x+1)}\right)+f\left(\frac{x+1}{xf(y)}\right)=f(y) \]