Found problems: 85335
DMM Team Rounds, 2005
[b]p1.[/b] Find the sum of the seventeenth powers of the seventeen roots of the seventeeth degree polynomial equation $x^{17} - 17x + 17 = 0$.
[b]p2.[/b] Four identical spherical cows, each of radius $17$ meters, are arranged in a tetrahedral pyramid (their centers are the vertices of a regular tetrahedron, and each one is tangent to the other three). The pyramid of cows is put on the ground, with three of them laying on it. What is the distance between the ground and the top of the topmost cow?
[b]p3.[/b] If $a_n$ is the last digit of $\sum^{n}_{i=1} i$, what would the value of $\sum^{1000}_{i=1}a_i$ be?
[b]p4.[/b] If there are $15$ teams to play in a tournament, $2$ teams per game, in how many ways can the tournament be organized if each team is to participate in exactly $5$ games against dierent opponents?
[b]p5.[/b] For $n = 20$ and $k = 6$, calculate $$2^k {n \choose 0}{n \choose k}- 2^{k-1}{n \choose 1}{{n - 1} \choose {k - 1}} + 2^{k-2}{n \choose 2}{{n - 2} \choose {k - 2}} +...+ (-1)^k {n \choose k}{{n - k} \choose 0}$$ where ${n \choose k}$ is the number of ways to choose $k$ things from a set of $n$.
[b]p6.[/b] Given a function $f(x) = ax^2 + b$, with a$, b$ real numbers such that $$f(f(f(x))) = -128x^8 + \frac{128}{3}x^6 - \frac{16}{22}x^2 +\frac{23}{102}$$ , find $b^a$.
[b]p7.[/b] Simplify the following fraction $$\frac{(2^3-1)(3^3-1)...(100^3-1)}{(2^3+1)(3^3+1)...(100^3+1)}$$
[b]p8.[/b] Simplify the following expression
$$\frac{\sqrt{3 + \sqrt5} + \sqrt{3 - \sqrt5}}{\sqrt{3 - \sqrt8}} -\frac{4}{ \sqrt{8 - 2\sqrt{15}}}$$
[b]p9.[/b] Suppose that $p(x)$ is a polynomial of degree $100$ such that $p(k) = k2^{k-1}$ , $k =1, 2, 3 ,... , 100$. What is the value of $p(101)$ ?
[b]p10. [/b] Find all $17$ real solutions $(w, x, y, z)$ to the following system of equalities:
$$ 2w + w^2x = x$$
$$ 2x + x^2y=y $$
$$ 2y + y^2z=z $$
$$ -2z+z^2w=w $$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2018 China Team Selection Test, 6
Let $M,a,b,r$ be non-negative integers with $a,r\ge 2$, and suppose there exists a function $f:\mathbb{Z}\rightarrow\mathbb{Z}$ satisfying the following conditions:
(1) For all $n\in \mathbb{Z}$, $f^{(r)}(n)=an+b$ where $f^{(r)}$ denotes the composition of $r$ copies of $f$
(2) For all $n\ge M$, $f(n)\ge 0$
(3) For all $n>m>M$, $n-m|f(n)-f(m)$
Show that $a$ is a perfect $r$-th power.
2004 Purple Comet Problems, 2
In $\triangle ABC$, three lines are drawn parallel to side $BC$ dividing the altitude of the triangle into four equal parts. If the area of the second largest part is $35$, what is the area of the whole $\triangle ABC$?
[asy]
defaultpen(linewidth(0.7)); size(120);
pair B = (0,0), C = (1,0), A = (0.7,1); pair[] AB, AC;
draw(A--B--C--cycle);
for(int i = 1; i < 4; ++i) {
AB.push((i*A + (4-i)*B)/4); AC.push((i*A + (4-i)*C)/4);
draw(AB[i-1] -- AC[i-1]);
}
filldraw(AB[1]--AB[0]--AC[0]--AC[1]--cycle, gray(0.7));
label("$A$",A,N); label("$B$",B,S); label("$C$",C,S);[/asy]
2009 China Team Selection Test, 3
Consider function $ f: R\to R$ which satisfies the conditions for any mutually distinct real numbers $ a,b,c,d$ satisfying $ \frac {a \minus{} b}{b \minus{} c} \plus{} \frac {a \minus{} d}{d \minus{} c} \equal{} 0$, $ f(a),f(b),f(c),f(d)$ are mutully different and $ \frac {f(a) \minus{} f(b)}{f(b) \minus{} f(c)} \plus{} \frac {f(a) \minus{} f(d)}{f(d) \minus{} f(c)} \equal{} 0.$ Prove that function $ f$ is linear
1990 Irish Math Olympiad, 5
Let $ABC$ be a right-angled triangle with right-angle at $A$. Let $X$ be the foot of the perpendicular from $A$ to $BC$, and $Y$ the mid-point of $XC$. Let $AB$ be extended to $D$ so that $|AB|=|BD|$. Prove that $DX$ is perpendicular to $AY$.
2020 IOM, 5
There is an empty table with $2^{100}$ rows and $100$ columns. Alice and Eva take turns filling the empty cells of the first row of the table, Alice plays first. In each move, Alice chooses an empty cell and puts a cross in it; Eva in each move chooses an empty cell and puts a zero. When no empty cells remain in the first row, the players move on to the second row, and so on (in each new row Alice plays first).
The game ends when all the rows are filled. Alice wants to make as many different rows in the table as possible, while Eva wants to make as few as possible. How many different rows will be there in the table if both follow their best strategies?
Proposed by Denis Afrizonov
2021-2022 OMMC, 3
Parabolas $P_1, P_2$ share a focus at $(20,22)$ and their directrices are the $x$ and $y$ axes respectively. They intersect at two points $X,Y.$ Find $XY^2.$
[i]Proposed by Evan Chang[/i]
2015 Irish Math Olympiad, 9
Let $p(x)$ and $q(x)$ be non-constant polynomial functions with integer coeffcients. It is known that the polynomial $p(x)q(x) - 2015$ has at least $33$ different integer roots. Prove that neither $p(x)$ nor $q(x)$ can be a polynomial of degree less than three.
Kyiv City MO Juniors 2003+ geometry, 2014.851
On the side $AB$ of the triangle $ABC$ mark the point $K$. The segment $CK$ intersects the median $AM$ at the point $F$. It is known that $AK = AF$. Find the ratio $MF: BK$.
Estonia Open Senior - geometry, 1995.2.4
Find all points on the plane such that the sum of the distances of each of the four lines defined by the unit square of that plane is $4$.
1997 Argentina National Olympiad, 4
The first $1997$ natural numbers are written on the blackboard: $1,2,3,\ldots ,1997$. In front of each number, a "$+$" sign or a "$-$" sign will be written in order, from left to right. To decide each sign, a coin is tossed; If it comes up heads, you write "$+$", if it comes up tails, you write "$-$". Once the $1997$ signs are written, the algebraic sum of the expression on the blackboard is carried out and the result is $S$. What is the probability that $S$ is greater than $0$?
Clarification: The probability of an event is equal to the number of favorable cases/number of possible cases.
2014-2015 SDML (High School), 9
What is the smallest number of queens that can be placed on an $8\times8$ chess board so that every square is either occupied or can be reached in one move? (A queen can be moved any number of unoccupied squares in a straight line vertically, horizontally, or diagonally.)
$\text{(A) }4\qquad\text{(B) }5\qquad\text{(C) }6\qquad\text{(D) }7\qquad\text{(E) }8$
1985 Miklós Schweitzer, 4
[b]4.[/b] Call a subset $S$ of the set $\{1,\dots,n\}$ [i]exceptional[/i] if any pair of distinct elements of $S$ are coprime. Consider an exceptional set with a maximal sum of elements (among all exceptional sets for a fixed $n$). Prove that if $n$ is sufficiently large, then each element of $S$ has at most two distinct prime divisors. ([b]N.17[/b])
[P. Erdos]
2011 AMC 12/AHSME, 10
A pair of standard 6-sided fair dice is rolled once. The sum of the numbers rolled determines the diameter of a circle. What is the probability that the numerical value of the area of the circle is less than the numerical value of the circle's circumference?
$ \textbf{(A)}\ \frac{1}{36} \qquad
\textbf{(B)}\ \frac{1}{12} \qquad
\textbf{(C)}\ \frac{1}{6} \qquad
\textbf{(D)}\ \frac{1}{4} \qquad
\textbf{(E)}\ \frac{5}{18}
$
1998 Estonia National Olympiad, 5
Thirteen children are sitting at a round table, each holding two cards. Each card has one of the numbers $1, 2, ..., 13$ written on it, and each number is written on exactly two cards. On a signal, each child gives the card with the lower number to his neighbor on the right (and at the same time receives his card with the lower number from the neighbor on the left). Prove that after a finite number of such exchanges, a situation arises when at least one of the children will have two cards with the same number.
2023 AIME, 7
Each vertex of a regular dodecagon (12-gon) is to be colored either red or blue, and thus there are $2^{12}$ possible colorings. Find the number of these colorings with the property that no four vertices colored the same color are the four vertices of a rectangle.
PEN E Problems, 28
Show that $n^{\pi(2n)-\pi(n)}<4^{n}$ for all positive integer $n$.
2016 AMC 12/AHSME, 5
The War of $1812$ started with a declaration of war on Thursday, June $18$, $1812$. The peace treaty to end the war was signed $919$ days later, on December $24$, $1814$. On what day of the week was the treaty signed?
$\textbf{(A)}\ \text{Friday} \qquad
\textbf{(B)}\ \text{Saturday} \qquad
\textbf{(C)}\ \text{Sunday} \qquad
\textbf{(D)}\ \text{Monday} \qquad
\textbf{(E)}\ \text{Tuesday} $
2014 German National Olympiad, 4
For real numbers $x$, $y$ and $z$, solve the system of equations:
$$x^3+y^3=3y+3z+4$$ $$y^3+z^3=3z+3x+4$$ $$x^3+z^3=3x+3y+4$$
1993 All-Russian Olympiad Regional Round, 11.3
Point $O$ is the foot of the altitude of a quadrilateral pyramid. A sphere with center $O$ is tangent to all lateral faces of the pyramid. Points $A,B,C,D$ are taken on successive lateral edges so that segments $AB$, $BC$, and $CD$ pass through the three corresponding tangency points of the sphere with the faces. Prove that the segment $AD$ passes through the fourth tangency point
1984 Tournament Of Towns, (058) A2
In a ballroom dance class $15$ boys and $15$ girls are lined up in parallel rows so that $15$ couples are formed. It so happens that the difference in height between the boy and the girl in each couple is not more than $10$ cm. Prove that if the boys and the girls were placed in each line in order of decreasing height, then the difference in height in each of the newly formed couples would still be at most $10$ cm.
(AG Pechkovskiy, Moscow)
2007 France Team Selection Test, 3
A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.
2014 Dutch BxMO/EGMO TST, 1
Find all non-negative integer numbers $n$ for which there exists integers $a$ and $b$ such that $n^2=a+b$ and $n^3=a^2+b^2.$
2015 Math Prize for Girls Problems, 18
Let $n$ be a positive integer. When the leftmost digit of (the standard base 10 representation of) $n$ is shifted to the rightmost position (the units position), the result is $n/3$. Find the smallest possible value of the sum of the digits of $n$.
2017 Moldova Team Selection Test, 4
Determine all natural numbers $n$ of the form $n=[a,b]+[b,c]+[c,a]$ where $a,b,c$ are positive integers and $[u,v]$ is the least common multiple of the integers $u$ and $v$.