Found problems: 85335
2013 Swedish Mathematical Competition, 5
Let $n \geq 2$ be a positive integer. Show that there are exactly $2^{n-3}n(n-1)$ $n$-tuples of integers $(a_1,a_2,\dots,a_n)$, which satisfy the conditions:
(i) $a_1=0$;
(ii) for each $m$, $2 \leq m \leq n$, there is an index in $m$, $1 \leq i_m <m$, such that $\left|a_{i_m}-a_m\right|\leq 1$;
(iii) the $n$-tuple $(a_1,a_2,\dots,a_n)$ contains exactly $n-1$ different numbers.
PEN E Problems, 7
Show that there exists a positive integer $ k$ such that $ k \cdot 2^{n} \plus{} 1$ is composite for all $ n \in \mathbb{N}_{0}$.
2009 QEDMO 6th, 6
An empire has a finite number of cities. Every two cities are connected by a natural number of roads . Every street connects exactly two cities. Show that you have the kingdom can be divided into a maximum of three republics so that within each republic there are just many streets run away. (We say a road runs within a republic if the two cities that it connects, both belonging to this republic. The republics must meet each other be disjoint, and cover all cities of the empire in total.)
[hide=original wording in German]Ein Reich hat endlich viele St¨adte. Je zwei St¨adte sind durch eine natu¨rliche Anzahl von Straßen verbunden. Jede Straße verbindet genau zwei St¨adte. Man zeige, dass man das Reich so in h¨ochstens drei Republiken zerteilen kann, dass innerhalb jeder Republik gerade viele Straßen verlaufen. (Wir sagen, eine Straße verl¨auft innerhalb einer Republik, wenn die zwei St¨adte, die sie verbindet, beide dieser Republik angeh¨oren. Die Republiken mu¨ssen zueinander disjunkt sein, und insgesamt alle St¨adte des Reiches abdecken.)[/hide]
1999 USAMO, 4
Let $a_{1}, a_{2}, \dots, a_{n}$ ($n > 3$) be real numbers such that \[ a_{1} + a_{2} + \cdots + a_{n} \geq n \qquad \mbox{and} \qquad a_{1}^{2} + a_{2}^{2} + \cdots + a_{n}^{2} \geq n^{2}. \] Prove that $\max(a_{1}, a_{2}, \dots, a_{n}) \geq 2$.
2021 239 Open Mathematical Olympiad, 1
You are given $n$ different primes $p_1, p_2,..., p_n$. Consider the polynomial $$x^n + a_1x^{n -1} + a_2x^{n - 2} + ...+ a_{n - 1}x + a_n$$, where $a_i$ is the product of the first $i$ given prime numbers. For what $n$ can it have an integer root?
2006 Harvard-MIT Mathematics Tournament, 7
Suppose $ABCD$ is an isosceles trapezoid in which $\overline{AB}\parallel\overline{CD}$. Two mutually externally tangent circles $\omega_1$ and $\omega_2$ are inscribed in $ABCD$ such that $\omega_1$ is tangent to $\overline{AB}$,$\overline{BC}$, and $\overline{CD}$ while $\omega_2$ is tangent to $\overline{AB}$, $\overline{DA}$, and $\overline{CD}$. Given that $AB=1$, $CD=6$, compute the radius of either circle.
2006 Irish Math Olympiad, 2
$P$ and $Q$ are points on the equal sides $AB$ and $AC$ respectively of an isosceles triangle $ABC$ such that $AP=CQ$. Moreover, neither $P$ nor $Q$ is a vertex of $ABC$. Prove that the circumcircle of the triangle $APQ$ passes through the circumcenter of the triangle $ABC$.
2010 China Girls Math Olympiad, 3
Prove that for every given positive integer $n$, there exists a prime $p$ and an integer $m$ such that
$(a)$ $p \equiv 5 \pmod 6$
$(b)$ $p \nmid n$
$(c)$ $n \equiv m^3 \pmod p$
2011 Kazakhstan National Olympiad, 2
Determine the smallest possible number $n> 1$ such that there exist positive integers $a_{1}, a_{2}, \ldots, a_{n}$ for which ${a_{1}}^{2}+\cdots +{a_{n}}^{2}\mid (a_{1}+\cdots +a_{n})^{2}-1$.
2006 Hong kong National Olympiad, 4
Let $(a_n)_{n\ge 1}$ be a sequence of positive numbers. If there is a constant $M > 0$ such that $a_2^2 + a_2^2 +\ldots + a_n^2 < Ma_{n+1}^2$ for all $n$, then prove that there is a constant $M ' > 0$ such that $a_1 + a_2 +\ldots + a_n < M ' a_{n+1}$ .
IV Soros Olympiad 1997 - 98 (Russia), 9.4
Find the smallest and largest values of the expression $$\frac{ \left| ...\left| |x-1|-1\right| ... -1\right| +1}{\left| |x-2|-1 \right|+1}$$ (The number of units in the numerator of a fraction, including the last one, is eleven, of which ten are under the absolute value sign.)
2015 Regional Competition For Advanced Students, 1
Determine all triples $(a,b,c)$ of positive integers satisfying the conditions
$$\gcd(a,20) = b$$
$$\gcd(b,15) = c$$
$$\gcd(a,c) = 5$$
(Richard Henner)
1997 Dutch Mathematical Olympiad, 1
For each positive integer $n$ we define $f (n)$ as the product of the sum of the digits of $n$ with $n$ itself.
Examples: $f (19) = (1 + 9) \times 19 = 190$, $f (97) = (9 + 7) \times 97 = 1552$.
Show that there is no number $n$ with $f (n) = 19091997$.
2016 IMC, 5
Let $A$ be a $n\times n$ complex matrix whose eigenvalues have absolute value at most $1$. Prove that $$ \|A^n\|\le \dfrac{n}{\ln 2} \|A\|^{n-1}. $$ (Here $\|B\|=\sup\limits_{\|x\|\leq 1} \|Bx\|$ for every $n\times n$ matrix $B$ and $\|x\|=\sqrt{\sum\limits_{i=1}^n |x_i|^2}$ for every complex vector $x\in\mathbb{C}^n$.)
(Proposed by Ian Morris and Fedor Petrov, St. Petersburg State University)
1952 Miklós Schweitzer, 6
Let $ 2n$ distinct points on a circle be given. Arrange them into disjoint pairs in an arbitrary way and join the couples by chords. Determine the probability that no two of these $ n$ chords intersect. (All possible arrangement into pairs are supposed to have the same probability.)
2024 India Regional Mathematical Olympiad, 5
Let $ABC$ be a triangle with $\angle ABC = 20^{\circ}$ and $\angle ACB = 40^{\circ}$. Let $D$ be a point on $BC$ such that $\angle BAD = \angle DAC$. Let the incircle of triangle $ABC$ touch $BC$ at $E$. Prove that $BD = 2 \cdot CE$.
2013 NIMO Problems, 7
Let $p$ be the largest prime less than $2013$ for which \[ N = 20 + p^{p^{p+1}-13} \] is also prime. Find the remainder when $N$ is divided by $10^4$.
[i]Proposed by Evan Chen and Lewis Chen[/i]
2011 Princeton University Math Competition, B4
Let $\omega$ be a circle of radius $6$ with center $O$. Let $AB$ be a chord of $\omega$ having length $5$. For any real constant $c$, consider the locus $\mathcal{L}(c) $ of all points $P$ such that $PA^2 - PB^2 = c$. Find the largest value of $c$ for which the intersection of $\mathcal{L}(c)$ and $\omega$ consists of just one point.
1993 Bundeswettbewerb Mathematik, 2
Let $M$ be a finite subset of the plane such that for any two different points $A,B\in M$ there is a point $C\in M$ such that $ABC$ is equilateral. What is the maximal number of points in $M?$
2005 China Team Selection Test, 2
Determine whether $\sqrt{1001^2+1}+\sqrt{1002^2+1}+ \cdots + \sqrt{2000^2+1}$ be a rational number or not?
2006 Germany Team Selection Test, 3
Let $n$ be a positive integer, and let $b_{1}$, $b_{2}$, ..., $b_{n}$ be $n$ positive reals. Set $a_{1}=\frac{b_{1}}{b_{1}+b_{2}+...+b_{n}}$ and $a_{k}=\frac{b_{1}+b_{2}+...+b_{k}}{b_{1}+b_{2}+...+b_{k-1}}$ for every $k>1$. Prove the inequality
$a_{1}+a_{2}+...+a_{n}\leq\frac{1}{a_{1}}+\frac{1}{a_{2}}+...+\frac{1}{a_{n}}$.
2015 AIME Problems, 1
The expressions $A=1\times2+3\times4+5\times6+\cdots+37\times38+39$ and $B=1+2\times3+4\times5+\cdots+36\times37+38\times39$ are obtained by writing multiplication and addition operators in an alternating pattern between successive integers. Find the positive difference between integers $A$ and $B$.
2023 Belarusian National Olympiad, 9.6
Find the biggest positive integer $n$ for which the number $(n!)^6-6^n$ is divisible by $2022$.
2010 Greece Team Selection Test, 4
Find all functions $ f:\mathbb{R^{\ast }}\rightarrow \mathbb{ R^{\ast }}$ satisfying $f(\frac{f(x)}{f(y)})=\frac{1}{y}f(f(x))$ for all $x,y\in \mathbb{R^{\ast }}$
and are strictly monotone in $(0,+\infty )$
2019 LMT Fall, Individual
[b]p1.[/b] For positive real numbers $x, y$, the operation $\otimes$ is given by $x \otimes y =\sqrt{x^2 - y}$ and the operation $\oplus$ is given by $x \oplus y =\sqrt{x^2 + y}$. Compute $(((5\otimes 4)\oplus 3)\otimes2)\oplus 1$.
[b]p2.[/b] Janabel is cutting up a pizza for a party. She knows there will either be $4$, $5$, or $6$ people at the party including herself, but can’t remember which. What is the least number of slices Janabel can cut her pizza to guarantee that everyone at the party will be able to eat an equal number of slices?
[b]p3.[/b] If the numerator of a certain fraction is added to the numerator and the denominator, the result is $\frac{20}{19}$ . What is the fraction?
[b]p4.[/b] Let trapezoid $ABCD$ be such that $AB \parallel CD$. Additionally, $AC = AD = 5$, $CD = 6$, and $AB = 3$. Find $BC$.
[b]p5.[/b] AtMerrick’s Ice Cream Parlor, customers can order one of three flavors of ice cream and can have their ice cream in either a cup or a cone. Additionally, customers can choose any combination of the following three toppings: sprinkles, fudge, and cherries. How many ways are there to buy ice cream?
[b]p6.[/b] Find the minimum possible value of the expression $|x+1|+|x-4|+|x-6|$.
[b]p7.[/b] How many $3$ digit numbers have an even number of even digits?
[b]p8.[/b] Given that the number $1a99b67$ is divisible by $7$, $9$, and $11$, what are $a$ and $b$? Express your answer as an ordered pair.
[b]p9.[/b] Let $O$ be the center of a quarter circle with radius $1$ and arc $AB$ be the quarter of the circle’s circumference. Let $M$,$N$ be the midpoints of $AO$ and $BO$, respectively. Let $X$ be the intersection of $AN$ and $BM$. Find the area of the region enclosed by arc $AB$, $AX$,$BX$.
[b]p10.[/b] Each square of a $5$-by-$1$ grid of squares is labeled with a digit between $0$ and $9$, inclusive, such that the sum of the numbers on any two adjacent squares is divisible by $3$. How many such labelings are possible if each digit can be used more than once?
[b]p11.[/b] A two-digit number has the property that the difference between the number and the sum of its digits is divisible by the units digit. If the tens digit is $5$, how many different possible values of the units digit are there?
[b]p12.[/b] There are $2019$ red balls and $2019$ white balls in a jar. One ball is drawn and replaced with a ball of the other color. The jar is then shaken and one ball is chosen. What is the probability that this ball is red?
[b]p13.[/b] Let $ABCD$ be a square with side length $2$. Let $\ell$ denote the line perpendicular to diagonal $AC$ through point $C$, and let $E$ and $F$ be themidpoints of segments $BC$ and $CD$, respectively. Let lines $AE$ and $AF$ meet $\ell$ at points $X$ and $Y$ , respectively. Compute the area of $\vartriangle AXY$ .
[b]p14.[/b] Express $\sqrt{21-6\sqrt6}+\sqrt{21+6\sqrt6}$ in simplest radical form.
[b]p15.[/b] Let $\vartriangle ABC$ be an equilateral triangle with side length two. Let $D$ and $E$ be on $AB$ and $AC$ respectively such that $\angle ABE =\angle ACD = 15^o$. Find the length of $DE$.
[b]p16.[/b] $2018$ ants walk on a line that is $1$ inch long. At integer time $t$ seconds, the ant with label $1 \le t \le 2018$ enters on the left side of the line and walks among the line at a speed of $\frac{1}{t}$ inches per second, until it reaches the right end and walks off. Determine the number of ants on the line when $t = 2019$ seconds.
[b]p17.[/b] Determine the number of ordered tuples $(a_1,a_2,... ,a_5)$ of positive integers that satisfy $a_1 \le a_2 \le ... \le a_5 \le 5$.
[b]p18.[/b] Find the sum of all positive integer values of $k$ for which the equation $$\gcd (n^2 -n -2019,n +1) = k$$ has a positive integer solution for $n$.
[b]p19.[/b] Let $a_0 = 2$, $b_0 = 1$, and for $n \ge 0$, let
$$a_{n+1} = 2a_n +b_n +1,$$
$$b_{n+1} = a_n +2b_n +1.$$
Find the remainder when $a_{2019}$ is divided by $100$.
[b]p20.[/b] In $\vartriangle ABC$, let $AD$ be the angle bisector of $\angle BAC$ such that $D$ is on segment $BC$. Let $T$ be the intersection of ray $\overrightarrow{CB}$ and the line tangent to the circumcircle of $\vartriangle ABC$ at $A$. Given that $BD = 2$ and $TC = 10$, find the length of $AT$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].