Found problems: 85335
2019 Bulgaria National Olympiad, 1
Let $f(x)=x^2+bx+1,$ where $b$ is a real number. Find the number of integer solutions to the inequality $f(f(x)+x)<0.$
2024 Indonesia TST, 2
Consider a $100 \times 100$ table, and identify the cell in row $a$ and column $b$, $1 \leq a, b \leq 100$, with the ordered pair $(a, b)$. Let $k$ be an integer such that $51 \leq k \leq 99$. A $k$-knight is a piece that moves one cell vertically or horizontally and $k$ cells to the other direction; that is, it moves from $(a, b)$ to $(c, d)$ such that $(|a-c|, |b - d|)$ is either $(1, k)$ or $(k, 1)$. The $k$-knight starts at cell $(1, 1)$, and performs several moves. A sequence of moves is a sequence of cells $(x_0, y_0)= (1, 1)$, $(x_1, y_1), (x_2, y_2)$, $\ldots, (x_n, y_n)$ such that, for all $i = 1, 2, \ldots, n$, $1 \leq x_i , y_i \leq 100$ and the $k$-knight can move from $(x_{i-1}, y_{i-1})$ to $(x_i, y_i)$. In this case, each cell $(x_i, y_i)$ is said to be reachable. For each $k$, find $L(k)$, the number of reachable cells.
2014 Portugal MO, 2
Let $[ABCD]$ be a square, $M$ a point on the segment $[AD]$, and $N$ a point on the segment $[DC]$ such that $B\hat{M}A = N\hat{M}D = 60^{\circ}$. Calculate $M\hat{B}N$.
1999 Denmark MO - Mohr Contest, 2
A fisherman has caught a number of fish. The three heaviest together make up $35\%$ of the total weight of the catch. He sells them. After that, the three lightest make up together $5/13$ of the weight of the rest. How many fish did he catch?
2021 AMC 10 Spring, 22
Hiram's algebra notes are $50$ pages long and are printed on $25$ sheets of paper; the first sheet contains pages $1$ and $2$, the second sheet contains pages $3$ and $4$, and so on. One day he leaves his notes on the table before leaving for lunch, and his roommate decides to borrow some pages from the middle of the notes. When Hiram comes back, he discovers that his roommate has taken a consecutive set of sheets from the notes and that the average (mean) of the page numbers on all remaining sheets is exactly $19$. How many sheets were borrowed?
$\textbf{(A)}\ 10\qquad\textbf{(B)}\ 13\qquad\textbf{(C)}\ 15\qquad\textbf{(D)}\ 17\qquad\textbf{(E)}\ 20$
2018 Estonia Team Selection Test, 10
A sequence of positive real numbers $a_1, a_2, a_3, ... $ satisfies $a_n = a_{n-1} + a_{n-2}$ for all $n \ge 3$. A sequence $b_1, b_2, b_3, ...$ is defined by equations
$b_1 = a_1$ ,
$b_n = a_n + (b_1 + b_3 + ...+ b_{n-1})$ for even $n > 1$ ,
$b_n = a_n + (b_2 + b_4 + ... +b_{n-1})$ for odd $n > 1$.
Prove that if $n\ge 3$, then $\frac13 < \frac{b_n}{n \cdot a_n} < 1$
2023 Kyiv City MO Round 1, Problem 1
Find the integer which is closest to the value of the following expression:
$$\left((3 + \sqrt{1})^{2023} - \left(\frac{1}{3 - \sqrt{1}}\right)^{2023} \right) \cdot \left((3 + \sqrt{2})^{2023} - \left(\frac{1}{3 - \sqrt{2}}\right)^{2023} \right) \cdot \ldots \cdot \left((3 + \sqrt{8})^{2023} - \left(\frac{1}{3 - \sqrt{8}}\right)^{2023} \right)$$
2018 Pan African, 1
Find all functions $f : \mathbb Z \to \mathbb Z$ such that $$(f(x + y))^2 = f(x^2) + f(y^2)$$ for all $x, y \in \mathbb Z$.
2014 HMNT, 2
Let $ABC$ be a triangle with $\angle B = 90^o$. Given that there exists a point $D$ on $AC$ such that $AD = DC$ and $BD = BC$, compute the value of the ratio $\frac{AB}{BC}$ .
2021 Dutch IMO TST, 4
On a rectangular board with $m \times n$ squares ($m, n \ge 3$) there are dominoes ($2 \times 1$ or $1\times 2$ tiles), which do not overlap and do not extend beyond the board. Every domino covers exactly two squares of the board. Assume that the dominos cover the has the property that no more dominos can be added to the board and that the four corner spaces of the board are not all empty. Prove that at least $2/3$ of the squares of the board are covered with dominos.
LMT Accuracy Rounds, 2022 S8
A ray originating at point $P$ intersects a circle with center $O$ at points $A$ and $B$, with $PB > PA$. Segment $\overline{OP}$ intersects the circle at point $C$. Given that $PA = 31$, $PC = 17$, and $\angle PBO = 60^o$, find the radius of the circle.
2023 MIG, 10
In the equation below, $x$ is a nonzero real number such that
\[\frac1{729}\left(3^t\right)=3^x.\]
Which of the following is equal to $t$?
$\textbf{(A) } \dfrac16x\qquad\textbf{(B) } \dfrac13x\qquad\textbf{(C) } 6x\qquad\textbf{(D) } x-6\qquad\textbf{(E) } x+6$
1988 China Team Selection Test, 4
There is a broken computer such that only three primitive data $c$, $1$ and $-1$ are reserved. Only allowed operation may take $u$ and $v$ and output $u \cdot v + v.$ At the beginning, $u,v \in \{c, 1, -1\}.$ After then, it can also take the value of the previous step (only one step back) besides $\{c, 1, -1\}$. Prove that for any polynomial $P_{n}(x) = a_0 \cdot x^n + a_1 \cdot x^{n-1} + \ldots + a_n$ with integer coefficients, the value of $P_n(c)$ can be computed using this computer after only finite operation.
2004 Junior Balkan Team Selection Tests - Romania, 4
Given is a convex polygon with $n\geq 5$ sides. Prove that there exist at most $\displaystyle \frac{n(2n-5)}3$ triangles of area 1 with the vertices among the vertices of the polygon.
2011 Cuba MO, 1
Let $P(x) = x^3 + (t - 1)x^2 - (t + 3)x + 1$. For what values of real $t$ the sum of the squares and the reciprocals of the roots of $ P(x)$ is minimum?
2023 Taiwan TST Round 3, A
Show that there exists a positive constant $C$ such that, for all positive reals $a$ and $b$ with $a + b$ being an integer, we have
$$\left\{a^3\right\} + \left\{b^3\right\} + \frac{C}{(a+b)^6} \le 2. $$
Here $\{x\} = x - \lfloor x\rfloor$ is the fractional part of $x$.
[i]Proposed by Li4 and Untro368.[/i]
2018 Belarusian National Olympiad, 10.7
The square $A_1B_1C_1D_1$ is inscribed in the right triangle $ABC$ (with $C=90$) so that points $A_1$, $B_1$ lie on the legs $CB$ and $CA$ respectively ,and points $C_1$, $D_1$ lie on the hypotenuse $AB$. The circumcircle of triangles $B_1A_1C$ an $AC_1B_1$ intersect at $B_1$ and $Y$. Prove that the lines $A_1X$ and $B_1Y$ meet on the hypotenuse $AB$.
2010 China Team Selection Test, 1
Assume real numbers $a_i,b_i\,(i=0,1,\cdots,2n)$ satisfy the following conditions:
(1) for $i=0,1,\cdots,2n-1$, we have $a_i+a_{i+1}\geq 0$;
(2) for $j=0,1,\cdots,n-1$, we have $a_{2j+1}\leq 0$;
(2) for any integer $p,q$, $0\leq p\leq q\leq n$, we have $\sum_{k=2p}^{2q}b_k>0$.
Prove that $\sum_{i=0}^{2n}(-1)^i a_i b_i\geq 0$, and determine when the equality holds.
2016 Saint Petersburg Mathematical Olympiad, 6
The circle contains a closed $100$-part broken line, such that no three segments pass through one point. All its corners are obtuse, and their sum in degrees is divided by $720$. Prove that this broken line has an odd number of self-intersection points.
Mathley 2014-15, 1
A large golden square land lot of dimension $100 \times 100$ m was subdivided into $100$ square lots, each measured $10\times10$ m. A king of landfill had his men dump wastes onto some of the lots. There was a practice that if a particular lot was not dumped and twoof its adjacents had waste materials, then the lot would be filled with wastes the next day by the people. One day if all the lotswere filled with wastes, the king would claim his ownership ofthe whole land lot. At least how many lots should have the kind had his men dump wastes onto?
Vu Ha Van, Mathematics Faculty, Yale University, USA.
2003 District Olympiad, 3
On a board are drawn the points $A,B,C,D$. Yetti constructs the points $A^\prime,B^\prime,C^\prime,D^\prime$ in the following way: $A^\prime$ is the symmetric of $A$ with respect to $B$, $B^\prime$ is the symmetric of $B$ wrt $C$, $C^\prime$ is the symmetric of $C$ wrt $D$ and $D^\prime$ is the symmetric of $D$ wrt $A$.
Suppose that Armpist erases the points $A,B,C,D$. Can Yetti rebuild them?
$\star \, \, \star \, \, \star$
[b]Note.[/b] [i]Any similarity to real persons is purely accidental.[/i]
PEN K Problems, 20
Find all functions $f: \mathbb{Q}\to \mathbb{Q}$ such that for all $x,y \in \mathbb{Q}$: \[f(x+y)+f(x-y)=2(f(x)+f(y)).\]
2016 APMC, 1
Given triangle $ABC$ with the inner - bisector $AD$. The line passes through $D$ and perpendicular to $BC$ intersects the outer - bisector of $\angle BAC$ at $I$. Circle $(I,ID)$ intersects $CA$, $AB$ at $E$, $F$, reps. The symmedian line of $\triangle AEF$ intersects the circle $(AEF)$ at $X$. Prove that the circles $(BXC)$ and $(AEF)$ are tangent.
[Hide=Diagram] [asy]import graph; size(7.04cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = 7.02, xmax = 14.06, ymin = -1.54, ymax = 4.08; /* image dimensions */
/* draw figures */
draw((8.62,3.12)--(7.58,-0.38));
draw((7.58,-0.38)--(13.68,-0.38));
draw((13.68,-0.38)--(8.62,3.12));
draw((8.62,3.12)--(9.85183961338573,3.5535510951732316));
draw((9.85183961338573,3.5535510951732316)--(9.851839613385732,-0.38));
draw((9.851839613385732,-0.38)--(8.62,3.12));
draw(circle((10.012708209519483,1.129702986881574), 2.4291805937992947));
draw((8.62,3.12)--(9.470868507287285,-1.238276762688951), red);
draw(shift((9.85183961338573,3.553551095173232))*xscale(3.9335510951732324)*yscale(3.9335510951732324)*arc((0,0),1,237.85842690125605,309.7357733435313), linetype("4 4"));
draw(shift((10.63,3.8274278922585725))*xscale(5.196628663716066)*yscale(5.196628663716066)*arc((0,0),1,234.06132677886183,305.9386732211382), blue);
/* dots and labels */
dot((8.62,3.12),linewidth(3.pt) + dotstyle);
label("$A$", (8.48,3.24), NE * labelscalefactor);
dot((7.58,-0.38),linewidth(3.pt) + dotstyle);
label("$B$", (7.3,-0.58), NE * labelscalefactor);
dot((13.68,-0.38),linewidth(3.pt) + dotstyle);
label("$C$", (13.76,-0.26), NE * labelscalefactor);
dot((9.851839613385732,-0.38),linewidth(3.pt) + dotstyle);
label("$D$", (9.94,-0.26), NE * labelscalefactor);
dot((9.85183961338573,3.5535510951732316),linewidth(3.pt) + dotstyle);
label("$I$", (9.94,3.68), NE * labelscalefactor);
dot((7.759138898806625,0.22287129406075654),linewidth(3.pt) + dotstyle);
label("$F$", (7.46,0.16), NE * labelscalefactor);
dot((12.36635458796946,0.5286480122740898),linewidth(3.pt) + dotstyle);
label("$E$", (12.44,0.64), NE * labelscalefactor);
dot((9.470868507287285,-1.238276762688951),linewidth(3.pt) + dotstyle);
label("$X$", (9.56,-1.12), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */ [/asy] [/Hide]
2007 Balkan MO Shortlist, A8
Let $c>2$ and $a_0,a_1, \ldots$ be a sequence of real numbers such that
\begin{align*} a_n = a_{n-1}^2 - a_{n-1} < \frac{1}{\sqrt{cn}} \end{align*}
for any $n$ $\in$ $\mathbb{N}$. Prove, $a_1=0$
2013 Canada National Olympiad, 5
Let $O$ denote the circumcentre of an acute-angled triangle $ABC$. Let point $P$ on side $AB$ be such that $\angle BOP = \angle ABC$, and let point $Q$ on side $AC$ be such that $\angle COQ = \angle ACB$. Prove that the reflection of $BC$ in the line $PQ$ is tangent to the circumcircle of triangle $APQ$.