Found problems: 85335
2023 Mid-Michigan MO, 5-6
[b]p1.[/b] Solve: $INK + INK + INK + INK + INK + INK = PEN$
($INK$ and $PEN$ are $3$-digit numbers, and different letters stand for different digits).
[b]p2. [/b]Two people play a game. They put $3$ piles of matches on the table:
the first one contains $1$ match, the second one $3$ matches, and the third one $4$ matches. Then they take turns making moves. In a move, a player may take any nonzero number of matches FROM ONE PILE. The player who takes the last match from the table loses the game.
a) The player who makes the first move can win the game. What is the winning first move?
b) How can he win? (Describe his strategy.)
[b]p3.[/b] The planet Naboo is under attack by the imperial forces. Three rebellion camps are located at the vertices of a triangle. The roads connecting the camps are along the sides of the triangle. The length of the first road is less than or equal to $20$ miles, the length of the second road is less than or equal to $30$ miles, and the length of the third road is less than or equal to $45$ miles. The Rebels have to cover the area of this triangle with a defensive field. What is the maximal area that they may need to cover?
[b]p4.[/b] Money in Wonderland comes in $\$5$ and $\$7$ bills. What is the smallest amount of money you need to buy a slice of pizza that costs $\$ 1$ and get back your change in full? (The pizza man has plenty of $\$5$ and $\$7$ bills.) For example, having $\$7$ won't do, since the pizza man can only give you $\$5$ back.
[b]p5.[/b] (a) Put $5$ points on the plane so that each $3$ of them are vertices of an isosceles triangle (i.e., a triangle with two equal sides), and no three points lie on the same line.
(b) Do the same with $6$ points.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1988 AMC 12/AHSME, 28
An unfair coin has probability $p$ of coming up heads on a single toss. Let $w$ be the probability that, in $5$ independent toss of this coin, heads come up exactly $3$ times. If $w = 144 / 625$, then
$ \textbf{(A)}\ p\text{ must be }2/5$
$ \textbf{(B)}\ p\text{ must be }3/5$
$ \textbf{(C)}\ p\text{ must be greater than }3/5$
$ \textbf{(D)}\ p\text{ is not uniquely determined}$
$ \textbf{(E)}\ \text{there is no value of }p\text{ for which }w = 144/625$
2016 India PRMO, 1
Consider all possible integers $n \ge 0$ such that $(5 \cdot 3^m) + 4 = n^2$ holds for some corresponding integer $m \ge 0$. Find the sum of all such $n$.
1997 Canadian Open Math Challenge, 9
The straight line $l_{1}$ with equation $x-2y+10 = 0$ meets the circle with equation $x^2 + y^2 = 100$ at B in the first quadrant. A line through B, perpendicular to $l_{1}$ cuts the y-axis at P (0, t). Determine the value of $t$.
2019 USA EGMO Team Selection Test, 6
Let $n$ be a positive integer. Tasty and Stacy are given a circular necklace with $3n$ sapphire beads and $3n$ turquoise beads, such that no three consecutive beads have the same color. They play a cooperative game where they alternate turns removing three consecutive beads, subject to the following conditions:
[list]
[*]Tasty must remove three consecutive beads which are turquoise, sapphire, and turquoise, in that order, on each of his turns.
[*]Stacy must remove three consecutive beads which are sapphire, turquoise, and sapphire, in that order, on each of her turns.
[/list]
They win if all the beads are removed in $2n$ turns. Prove that if they can win with Tasty going first, they can also win with Stacy going first.
[i]Yannick Yao[/i]
2016 Ukraine Team Selection Test, 8
Let $ABC$ be an acute triangle with $AB<BC$. Let $I$ be the incenter of $ABC$, and let $\omega$ be the circumcircle of $ABC$. The incircle of $ABC$ is tangent to the side $BC$ at $K$. The line $AK$ meets $\omega$ again at $T$. Let $M$ be the midpoint of the side $BC$, and let $N$ be the midpoint of the arc $BAC$ of $\omega$. The segment $NT$ intersects the circumcircle of $BIC$ at $P$. Prove that $PM\parallel AK$.
2024 Rioplatense Mathematical Olympiad, 6
Let $ABC$ be an acute triangle with $AB < AC$, and let $H$ be its orthocenter. Let $D$, $E$, $F$ and $M$ be the midpoints of $BC$, $AC$, and $AH$, respectively. Prove that the circumcircles of triangles $AHD$, $BMC$, and $DEF$ pass through a common point.
2011 Saint Petersburg Mathematical Olympiad, 6
We have garland with $n$ lights. Some lights are on, some are off. In one move we can take some turned on light (only turned on) and turn off it and also change state of neigbour lights. We want to turn off all lights after some moves.. For what $n$ is it always possible?
2021 Princeton University Math Competition, A1 / B3
Select two distinct diagonals at random from a regular octagon. What is the probability that the two diagonals intersect at a point strictly within the octagon? Express your answer as $a + b$, where the probability is $\tfrac{a}{b}$ and $a$ and $b$ are relatively prime positive integers.
2019 MIG, 8
James randomly selects $4$ distinct numbers between $3$ and $10$, inclusive. What is the probability that all $4$ numbers are prime?
$\textbf{(A) }0\qquad\textbf{(B) }\dfrac1{28}\qquad\textbf{(C) }\dfrac1{14}\qquad\textbf{(D) }\dfrac17\qquad\textbf{(E) }\dfrac14$
2015 Kosovo Team Selection Test, 3
It's given system of equations
$a_{11}x_1+a_{12}x_2+a_{1n}x_n=b_1$
$a_{21}x_1+a_{22}x_2+a_{2n}x_n=b_2$
..........
$a_{n1}x_1+a_{n2}x_2+a_{nn}x_n=b_n$
such that $a_{11},a_{12},...,a_{1n},b_1,a_{21},a_{22},...,a_{2n},b_2,...,a_{n1},a_{n2},...,a_{nn},b_n,$ form an arithmetic sequence.If system has one solution find it
1975 Czech and Slovak Olympiad III A, 1
Let $\mathbf T$ be a triangle with $[\mathbf T]=1.$ Show that there is a right triangle $\mathbf R$ such that $[\mathbf R]\le\sqrt3$ and $\mathbf T\subseteq\mathbf R.$ ($[-]$ denotes area of a triangle.)
2018 Danube Mathematical Competition, 2
Let $ABC$ be a triangle such that in its interior there exists a point $D$ with $\angle DAC = \angle DCA = 30^o$ and $ \angle DBA = 60^o$. Denote $E$ the midpoint of the segment $BC$, and take $F$ on the segment $AC$ so that $AF = 2FC$. Prove that $DE \perp EF$.
2009 Canada National Olympiad, 5
A set of points is marked on the plane, with the property that any three marked points can be covered with a disk of radius $1$. Prove that the set of all marked points can be covered with a disk of radius $1$.
1949-56 Chisinau City MO, 17
Prove that if the roots of the equation $x^2 + px + q = 0$ are real, then for any real number $a$ the roots of the equation $$x^2 + px + q + (x + a) (2x + p) = 0$$ are also real.
May Olympiad L1 - geometry, 2021.4
Facundo and Luca have been given a cake that is shaped like the quadrilateral in the figure.
[img]https://cdn.artofproblemsolving.com/attachments/3/2/630286edc1935e1a8dd9e704ed4c813c900381.png[/img]
They are going to make two straight cuts on the cake, thus obtaining $4$ portions in the shape of a quadrilateral. Then Facundo will be left with two portions that do not share any side, the other two will be for Luca. Show how they can cut the cuts so that both children get the same amount of cake. Justify why cutting in this way achieves the objective.
2000 Romania Team Selection Test, 1
Let $n\ge 2$ be a positive integer. Find the number of functions $f:\{1,2,\ldots ,n\}\rightarrow\{1,2,3,4,5 \}$ which have the following property: $|f(k+1)-f(k)|\ge 3$, for any $k=1,2,\ldots n-1$.
[i]Vasile Pop[/i]
1997 All-Russian Olympiad Regional Round, 11.2
All vertices of triangle $ABC$ lie inside square $K$. Prove that if all of them are reflected symmetrically with respect to the point of intersection of the medians of triangle $ABC$, then at least one of the resulting three points will be inside $K$.
2004 239 Open Mathematical Olympiad, 2
The incircle of a triangle $ABC$ has centre $I$ and touches sides $AB, BC, CA$ in points $C_1, A_1, B_1$ respectively. Denote by $L$ the foot of a bissector of angle $B$, and by $K$ the point of intersecting of lines $B_1I$ and $A_1C_1$. Prove that $KL\parallel BB_1$.
[b]proposed by L. Emelyanov, S. Berlov[/b]
2006 APMO, 5
In a circus, there are $n$ clowns who dress and paint themselves up using a selection of 12 distinct colours. Each clown is required to use at least five different colours. One day, the ringmaster of the circus orders that no two clowns have exactly the same set of colours and no more than 20 clowns may use any one particular colour. Find the largest number $n$ of clowns so as to make the ringmaster's order possible.
1994 Hong Kong TST, 1
Suppose, $x, y, z \in \mathbb{R}_+$ such that $xy+yz+zx=1$. Prove that, \[x(1-y^2)(1-z^2)+y(1-z^2)(1-x^2)+z(1-x^2)(1-y^2)\leq \frac{4\sqrt{3}}{9}\]
1964 Leningrad Math Olympiad, grade 6
[b]6.1[/b] Three shooters - Anilov, Borisov and Vorobiev - made $6$ each shots at one target and scored equal points. It is known that Anilov scored $43$ points in the first three shots, and Borisov scored $43$ points with the first shot knocked out 3 points. How many points did each shooter score per shot? if there was one hit in 50, two in 25, three in 20, three in 10, two in 5, in 3 - two, in 2 - two, in 1 - three?
[img]https://cdn.artofproblemsolving.com/attachments/a/1/4abb71f7bccc0b9d2e22066ec17c31ef139d6a.png[/img]
[b]6.2 / 7.4 [/b]Prove that a $10 \times 10$ chessboard cannot be covered with $ 25$ figures like [img]https://cdn.artofproblemsolving.com/attachments/0/4/89aafe1194628332ec13ad1c713bb35cbefff7.png[/img].
[b]6.3[/b] The squares of a chessboard contain natural numbers such that each is equal to the arithmetic mean of its neighbors. Sum of numbers standing in the corners of the board is $16$. Find the number standing on the field $e2$.
[b]6.4 [/b] There is a table $ 100 \times 100$. What is the smallest number of letters which can be arranged in its cells so that no two are identical the letters weren't next to each other?
[b]6.5[/b] The pioneer detachment is lined up in a rectangle. In each rank the tallest is noted, and from these pioneers the most short. In each row, the lowest one is noted, and from them is selected the tallest. Which of these two pioneers is taller? (This means that the two pioneers indicated are the highest of the low and the lowest of tall - must be different)
[b]6.6[/b] Find the product of three numbers whose sum is equal to the sum of their squares, equal to the sum of their cubes and equal to $1$.
PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3983461_1964_leningrad_math_olympiad]here[/url].
2008 Princeton University Math Competition, A3/B4
Find the largest integer $n$, where $2009^n$ divides $2008^{2009^{2010}} + 2010^{2009^{2008}}$
.
1995 IMO Shortlist, 4
Find all $ x,y$ and $ z$ in positive integer: $ z \plus{} y^{2} \plus{} x^{3} \equal{} xyz$ and $ x \equal{} \gcd(y,z)$.
1983 Vietnam National Olympiad, 1
Show that it is possible to express $1$ as a sum of $6$, and as a sum of $9$ reciprocals of odd positive integers. Generalize the problem.