This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2015 AMC 10, 5

Tags:
David, Hikmet, Jack, Marta, Rand, and Todd were in a $12$-person race with $6$ other people. Rand finished $6$ places ahead of Hikmet. Marta finished $1$ place behind Jack. David finished $2$ places behind Hikmet. Jack finished $2$ places behind Todd. Todd finished $1$ place behind Rand. Marta finished in $6$th place. Who finished in $8$th place? $\textbf{(A) } \text{David} \qquad\textbf{(B) } \text{Hikmet} \qquad\textbf{(C) } \text{Jack} \qquad\textbf{(D) } \text{Rand} \qquad\textbf{(E) } \text{Todd} $

2015 NZMOC Camp Selection Problems, 4

For which positive integers $m$ does the equation: $$(ab)^{2015} = (a^2 + b^2)^m$$ have positive integer solutions?

1993 Iran MO (2nd round), 1

Suppose that $p$ is a prime number and is greater than $3$. Prove that $7^{p}-6^{p}-1$ is divisible by $43$.

1955 Moscow Mathematical Olympiad, 317

A right circular cone stands on plane $P$. The radius of the cone’s base is $r$, its height is $h$. A source of light is placed at distance $H$ from the plane, and distance $1$ from the axis of the cone. What is the illuminated part of the disc of radius $R$, that belongs to $P$ and is concentric with the disc forming the base of the cone?

2018 Thailand TST, 1

Let $E$ and $F$ be points on side $BC$ of a triangle $\vartriangle ABC$. Points $K$ and $L$ are chosen on segments $AB$ and $AC$, respectively, so that $EK \parallel AC$ and $FL \parallel AB$. The incircles of $\vartriangle BEK$ and $\vartriangle CFL$ touches segments $AB$ and $AC$ at $X$ and $Y$ , respectively. Lines $AC$ and $EX$ intersect at $M$, and lines $AB$ and $FY$ intersect at $N$. Given that $AX = AY$, prove that $MN \parallel BC$.

1970 AMC 12/AHSME, 13

Tags:
Given the binary operation $\ast$ defined by $a\ast b=a^b$ for all positive numbers $a$ and $b$. The for all positive $a,b,c,n,$ we have $\textbf{(A) }a\ast b=b\ast a\qquad\textbf{(B) }a\ast (b\ast c)=(a\ast b)\ast c\qquad$ $\textbf{(C) }(a\ast b^n)=(a\ast n)\ast b\qquad\textbf{(D) }(a\ast b)^n=a\ast (bn)\qquad \textbf{(E) }\text{None of these}$

2014 Taiwan TST Round 3, 4

Let $ABC$ be a triangle with $\angle B > \angle C$. Let $P$ and $Q$ be two different points on line $AC$ such that $\angle PBA = \angle QBA = \angle ACB $ and $A$ is located between $P$ and $C$. Suppose that there exists an interior point $D$ of segment $BQ$ for which $PD=PB$. Let the ray $AD$ intersect the circle $ABC$ at $R \neq A$. Prove that $QB = QR$.

2012 SEEMOUS, Problem 3

a) Prove that if $k$ is an even positive integer and $A$ is a real symmetric $n\times n$ matrix such that $\operatorname{tr}(A^k)^{k+1}=\operatorname{tr}(A^{k+1})^k$, then $$A^n=\operatorname{tr}(A)A^{n-1}.$$ b) Does the assertion from a) also hold for odd positive integers $k$?

2009 Kazakhstan National Olympiad, 4

Tags: inequalities
Let $a,b,c,d $-reals positive numbers. Prove inequality: $\frac{a^2+b^2+c^2}{ab+bc+cd}+\frac{b^2+c^2+d^2}{bc+cd+ad}+\frac{a^2+c^2+d^2}{ab+ad+cd}+\frac{a^2+b^2+d^2}{ab+ad+bc} \geq 4$

1991 Czech And Slovak Olympiad IIIA, 3

For any permutation $p$ of the set $\{1,2,...,n\}$, let us denote $d(p) = |p(1)-1|+|p(2)-2|+...+|p(n)-n|$. Let $i(p)$ be the number of inversions of $p$, i.e. the number of pairs $1 \le i < j \le n$ with $p(i) > p(j)$. Prove that $d(p)\le 2i(p)$$.

2012 NIMO Summer Contest, 12

Tags:
The NEMO (National Electronic Math Olympiad) is similar to the NIMO Summer Contest, in that there are fifteen problems, each worth a set number of points. However, the NEMO is weighted using Fibonacci numbers; that is, the $n^{\text{th}}$ problem is worth $F_n$ points, where $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$. The two problem writers are fair people, so they make sure that each of them is responsible for problems worth an equal number of total points. Compute the number of ways problem writing assignments can be distributed between the two writers. [i]Proposed by Lewis Chen[/i]

2006 Iran Team Selection Test, 1

We have $n$ points in the plane, no three on a line. We call $k$ of them good if they form a convex polygon and there is no other point in the convex polygon. Suppose that for a fixed $k$ the number of $k$ good points is $c_k$. Show that the following sum is independent of the structure of points and only depends on $n$ : \[ \sum_{i=3}^n (-1)^i c_i \]

2024 Oral Moscow Geometry Olympiad, 3

The hypotenuse $AB$ of a right-angled triangle $ABC$ touches the corresponding excircle $\omega$ at point $T$. Point $S$ is symmetrical $T$ relative to the bisector of angle $C$, $CH$ is the height of the triangle. Prove that the circumcircle of triangle $CSH$ touches the circle $\omega$.

1991 AMC 12/AHSME, 20

The sum of all real $x$ such that $(2^{x} - 4)^{3} + (4^{x} - 2)^{3} = (4^{x} + 2^{x} - 6)^{3}$ is $ \textbf{(A)}\ 3/2\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 5/2\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 7/2 $

2022 BMT, Tie 3

You wish to color every vertex, edge, face, and the interior of a cube one color each such that no two adjacent objects are the same color. Faces are adjacent if they share an edge. Edges are adjacent if they share a vertex. The interior is adjacent to all of its faces, edges, and vertices. Each face is adjacent to all of its edges and vertices, but is not adjacent to any other edges or vertices. Each edge is adjacent to both of its vertices, but is not adjacent to any other vertices. What is the minimum number of colors required for a coloring satisfying this property?

2016 Peru IMO TST, 10

Tags: geometry
Let $ABC$ be a triangle with $CA \neq CB$. Let $D$, $F$, and $G$ be the midpoints of the sides $AB$, $AC$, and $BC$ respectively. A circle $\Gamma$ passing through $C$ and tangent to $AB$ at $D$ meets the segments $AF$ and $BG$ at $H$ and $I$, respectively. The points $H'$ and $I'$ are symmetric to $H$ and $I$ about $F$ and $G$, respectively. The line $H'I'$ meets $CD$ and $FG$ at $Q$ and $M$, respectively. The line $CM$ meets $\Gamma$ again at $P$. Prove that $CQ = QP$. [i]Proposed by El Salvador[/i]

1971 AMC 12/AHSME, 10

Tags:
Each of a group of $50$ girls is blonde or brunette and is blue eyed of brown eyed. If $14$ are blue-eyed blondes, $31$ are brunettes, and $18$ are brown-eyed, then the number of brown-eyed brunettes is $\textbf{(A) }5\qquad\textbf{(B) }7\qquad\textbf{(C) }9\qquad\textbf{(D) }11\qquad \textbf{(E) }13$

2020 June Advanced Contest, 2

Let $p$ be a prime number. At a school of $p^{2020}$ students it is required that each club consist of exactly $p$ students. Is it possible for each pair of students to have exactly one club in common?

Kettering MO, 2006

[b]p1.[/b] At a conference a mathematician and a chemist were talking. They were amazed to find that they graduated from the same high school. One of them, the chemist, mentioned that he had three sons and asked the other to calculate the ages of his sons given the following facts: (a) their ages are integers, (b) the product of their ages is $36$, (c) the sum of their ages is equal to the number of windows in the high school of the chemist and the mathematician. The mathematician considered this problem and noted that there was not enough information to obtain a unique solution. The chemist then noted that his oldest son had red hair. The mathematician then announced that he had determined the ages of the three sons. Please (aspiring mathematicians) determine the ages of the chemists three sons and explain your solution. [b]p2.[/b] A square is inscribed in a triangle. Two vertices of this square are on the base of the triangle and two others are on the lateral sides. Prove that the length of the side of the square is greater than and less than $2r$, where $r$ is a radius of the circle inscribed in the triangle. [b]p3.[/b] You are given any set of $100$ integers in which none of the integers is divisible by $100$. Prove that it is possible to select a subset of this set of $100$ integers such that their sum is a multiple of $100$. [b]p4.[/b] Find all prime numbers $a$ and $b$ such that $a^b + b^a$ is a prime number. [b]p5.[/b] $N$ airports are connected by airlines. Some airports are directly connected and some are not. It is always possible to travel from one airport to another by changing planes as needed. The board of directors decided to close one of the airports. Prove that it is possible to select an airport to close so that the remaining airports remain connected. [b]p6.[/b] (A simplified version of the Fermat’s Last Theorem). Prove that there are no positive integers $x, y, z$ and $z \le n$ satisfying the following equation: $x^n + y^n = z^n$. PS. You should use hide for answers.

2020 Spain Mathematical Olympiad, 3

To each point of $\mathbb{Z}^3$ we assign one of $p$ colors. Prove that there exists a rectangular parallelepiped with all its vertices in $\mathbb{Z}^3$ and of the same color.

2016 ITAMO, 5

Tags: algebra , sequence
Let $x_0,x_1,x_2,\ldots$ be a sequence of rational numbers defined recursively as follows: $x_0$ can be any rational number and, for $n\ge 0$, \[ x_{n+1}=\begin{cases} \left|\frac{x_n}2-1\right| & \text{if the numerator of }x_n\text{ is even}, \\ \left|\frac1{x_n}-1\right| & \text{if the numerator of }x_n\text{ is odd},\end{cases} \] where by numerator of a rational number we mean the numerator of the fraction in its lowest terms. Prove that for any value of $x_0$: (a) the sequence contains only finitely many distinct terms; (b) the sequence contains exactly one of the numbers $0$ and $2/3$ (namely, either there exists an index $k$ such that $x_k=0$, or there exists an index $m$ such that $x_m=2/3$, but not both).

2011 Kazakhstan National Olympiad, 1

The quadrilateral $ABCD$ is circumscribed about the circle, touches the sides $AB, BC, CD, DA$ in the points $K, L, M, N,$ respectively. Let $P, Q, R, S$ midpoints of the sides $KL, LM, MN, NK$. Prove that $PR = QS$ if and only if $ABCD$ is inscribed.

VII Soros Olympiad 2000 - 01, 9.4

Tags: algebra
The distance between cities $A$ and $B$ is $30$ km. A bus departed from $A$, which makes a stop every $5$ km for $2$ minutes. The bus moves between stops at a speed of $80$ km / h. Simultaneously with the departure of the bus from $A$, a cyclist leaves $B$ to meet it, traveling at a speed of $27$ km / h. How far from $A$ will the cyclist meet the bus?

2010 Estonia Team Selection Test, 2

Let $n$ be a positive integer. Find the largest integer $N$ for which there exists a set of $n$ weights such that it is possible to determine the mass of all bodies with masses of $1, 2, ..., N$ using a balance scale . (i.e. to determine whether a body with unknown mass has a mass $1, 2, ..., N$, and which namely).

2013 BMT Spring, 10

In a far away kingdom, there exist $k^2$ cities subdivided into k distinct districts, such that in the $i^ {th}$ district, there exist $2i - 1$ cities. Each city is connected to every city in its district but no cities outside of its district. In order to improve transportation, the king wants to add $k - 1$ roads such that all cities will become connected, but his advisors tell him there are many ways to do this. Two plans are different if one road is in one plan that is not in the other. Find the total number of possible plans in terms of $k$.