This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2021 Harvard-MIT Mathematics Tournament., 6

Tags: combi
A light pulse starts at a corner of a reflective square. It bounces around inside the square, reflecting off of the square’s perimeter $n$ times before ending in a different corner. The path of the light pulse, when traced, divides the square into exactly $2021$ regions. Compute the smallest possible value of $n$.

2016 JBMO Shortlist, 4

A splitting of a planar polygon is a fi nite set of triangles whose interiors are pairwise disjoint, and whose union is the polygon in question. Given an integer $n \ge 3$, determine the largest integer $m$ such that no planar $n$-gon splits into less than $m$ triangles.

2001 Chile National Olympiad, 5

On a right triangle of paper, two points $A$ and $B$ have been painted. You have scissors and you have the right to make cuts (on paper) as follows: cut through a height of the given triangle. In doing so, remove, without the respective altitude, one of the two triangles and continue the process. Prove that after a finite number of cuts you can separate points $A$ and $B$ leaving one of them outside the remaining triangles.

2011 LMT, 19

A positive six-digit integer begins and ends in $8$, and is also the product of three consecutive even numbers. What is the sum of the three even numbers?

2004 National Olympiad First Round, 32

Tags:
If $a$ and $b$ are the roots of the equation $x^2-2cx-5d = 0$, $c$ and $d$ are the roots of the equation $x^2-2ax-5b=0$, where $a,b,c,d$ are distinct real numbers, what is $a+b+c+d$? $ \textbf{(A)}\ 10 \qquad\textbf{(B)}\ 15 \qquad\textbf{(C)}\ 20 \qquad\textbf{(D)}\ 25 \qquad\textbf{(E)}\ 30 $

1995 Putnam, 4

Tags:
Suppose we have a necklace of $n$ beads. Each bead is labelled with an integer and the sum of all these labels is $n-1$. Prove that we can cut the necklace to form a string whose consecutive labels $x_1, x_2,\cdots , x_n$ satisfy \[ \sum_{i=1}^{k}x_i\le k-1\quad \forall \;\;1\le k\le n \]

2008 Baltic Way, 15

Some $1\times 2$ dominoes, each covering two adjacent unit squares, are placed on a board of size $n\times n$ such that no two of them touch (not even at a corner). Given that the total area covered by the dominoes is $2008$, find the least possible value of $n$.

1977 IMO Longlists, 57

In a finite sequence of real numbers the sum of any seven successive terms is negative and the sum of any eleven successive terms is positive. Determine the maximum number of terms in the sequence.

1942 Putnam, B1

Tags: conic , square
A square of side $2a$, lying always in the first quadrant of the $xy$-plane, moves so that two consecutive vertices are always on the $x$- and $y$-axes respectively. Prove that a point within or on the boundary of the square will in general describe a portion of a conic. For what points of the square does this locus degenerate?

2008 AMC 12/AHSME, 1

Tags:
A basketball player made $ 5$ baskets during a game. Each basket was worth either $ 2$ or $ 3$ points. How many different numbers could represent the total points scored by the player? $ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6$

XMO (China) 2-15 - geometry, 14.3

Tags: geometry
In quadrilateral $ABCD$, $E$ and $F$ are midpoints of $AB$ and $CD$, and $G$ is the intersection of $AD$ with $BC$. $P$ is a point within the quadrilateral, such that $PA=PB$, $PC=PD$, and $\angle APB+\angle CPD=180^{\circ}$. Prove that $PG$ and $EF$ are parallel.

PEN G Problems, 30

Let $\alpha=0.d_{1}d_{2}d_{3} \cdots$ be a decimal representation of a real number between $0$ and $1$. Let $r$ be a real number with $\vert r \vert<1$. [list=a][*] If $\alpha$ and $r$ are rational, must $\sum_{i=1}^{\infty} d_{i}r^{i}$ be rational? [*] If $\sum_{i=1}^{\infty} d_{i}r^{i}$ and $r$ are rational, $\alpha$ must be rational? [/list]

2014 China Western Mathematical Olympiad, 3

Let $A_1,A_2,...$ be a sequence of sets such that for any positive integer $i$, there are only finitely many values of $j$ such that $A_j\subseteq A_i$. Prove that there is a sequence of positive integers $a_1,a_2,...$ such that for any pair $(i,j)$ to have $a_i\mid a_j\iff A_i\subseteq A_j$.

2008 Harvard-MIT Mathematics Tournament, 9

Let $ ABC$ be a triangle, and $ I$ its incenter. Let the incircle of $ ABC$ touch side $ BC$ at $ D$, and let lines $ BI$ and $ CI$ meet the circle with diameter $ AI$ at points $ P$ and $ Q$, respectively. Given $ BI \equal{} 6, CI \equal{} 5, DI \equal{} 3$, determine the value of $ \left( DP / DQ \right)^2$.

1964 AMC 12/AHSME, 25

The set of values of $m$ for which $x^2+3xy+x+my-m$ has two factors, with integer coefficients, which are linear in $x$ and $y$, is precisely: $ \textbf{(A)}\ 0, 12, -12\qquad\textbf{(B)}\ 0, 12\qquad\textbf{(C)}\ 12, -12\qquad\textbf{(D)}\ 12\qquad\textbf{(E)}\ 0 $

2024 Germany Team Selection Test, 2

Show that there exists a real constant $C>1$ with the following property: For any positive integer $n$, there are at least $C^n$ positive integers with exactly $n$ decimal digits, which are divisible by the product of their digits. (In particular, these $n$ digits are all non-zero.) [i]Proposed by Jean-Marie De Koninck and Florian Luca[/i]

1967 IMO Shortlist, 1

Let $k,m,n$ be natural numbers such that $m+k+1$ is a prime greater than $n+1$. Let $c_s=s(s+1)$. Prove that \[(c_{m+1}-c_k)(c_{m+2}-c_k)\ldots(c_{m+n}-c_k)\] is divisible by the product $c_1c_2\ldots c_n$.

2015 Middle European Mathematical Olympiad, 6

Tags: incenter , geometry
Let $I$ be the incentre of triangle $ABC$ with $AB>AC$ and let the line $AI$ intersect the side $BC$ at $D$. Suppose that point $P$ lies on the segment $BC$ and satisfies $PI=PD$. Further, let $J$ be the point obtained by reflecting $I$ over the perpendicular bisector of $BC$, and let $Q$ be the other intersection of the circumcircles of the triangles $ABC$ and $APD$. Prove that $\angle BAQ=\angle CAJ$.

2011 Purple Comet Problems, 5

Tags:
Let $a_1 = 2,$ and for $n\ge 1,$ let $a_{n+1} = 2a_n + 1.$ Find the smallest value of an $a_n$ that is not a prime number.

1992 IMO Longlists, 60

Does there exist a set $ M$ with the following properties? [i](i)[/i] The set $ M$ consists of 1992 natural numbers. [i](ii)[/i] Every element in $ M$ and the sum of any number of elements have the form $ m^k$ $ (m, k \in \mathbb{N}, k \geq 2).$

2016 Iran Team Selection Test, 1

Let $m$ and $n$ be positive integers such that $m>n$. Define $x_k=\frac{m+k}{n+k}$ for $k=1,2,\ldots,n+1$. Prove that if all the numbers $x_1,x_2,\ldots,x_{n+1}$ are integers, then $x_1x_2\ldots x_{n+1}-1$ is divisible by an odd prime.

Russian TST 2016, P2

In a class, there are $n{}$ children of different heights. Denote by $A{}$ the number of ways to arrange them all in a row, numbered $1,2,\ldots,n$ from left to right, so that each person with an odd number is shorter than each of his neighbors. Let $B{}$ be the number of ways to organize $n-1$ badminton games between these children so that everyone plays at most two games with children shorter than himself and at most one game with children taller than himself (the order of the games is not important). Prove that $A = B$.

2002 Germany Team Selection Test, 2

Let $A_1$ be the center of the square inscribed in acute triangle $ABC$ with two vertices of the square on side $BC$. Thus one of the two remaining vertices of the square is on side $AB$ and the other is on $AC$. Points $B_1,\ C_1$ are defined in a similar way for inscribed squares with two vertices on sides $AC$ and $AB$, respectively. Prove that lines $AA_1,\ BB_1,\ CC_1$ are concurrent.

2016 Tournament Of Towns, 1

Tags: algebra , logarithm
On a blackboard the product $log_{( )}[ ]\times\dots\times log_{( )}[ ]$ is written (there are 50 logarithms in the product). Donald has $100$ cards: $[2], [3],\dots, [51]$ and $(52),\dots,(101)$. He is replacing each $()$ with some card of form $(x)$ and each $[]$ with some card of form $[y]$. Find the difference between largest and smallest values Donald can achieve.

2019 Chile National Olympiad, 3

Find all solutions $x,y,z$ in the positive integers of the equation $$3^x -5^y = z^2$$