This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2019 Jozsef Wildt International Math Competition, W. 67

Denote $T$ the Toricelli point of the triangle $ABC$. Prove that $$AB^2 \times BC^2 \times CA^2 \geq 3(TA^2\times TB + TB^2 \times TC + TC^2 \times TA)(TA\times TB^2 + TB \times TC^2 + TC \times TA^2)$$

2010 Today's Calculation Of Integral, 609

Prove that for positive number $t$, the function $F(t)=\int_0^t \frac{\sin x}{1+x^2}dx$ always takes positive number. 1972 Tokyo University of Education entrance exam

2023 LMT Fall, 4

Fred chooses a positive two-digit number with distinct nonzero digits. Laura takes Fred’s number and swaps its digits. She notices that the sum of her number and Fred’s number is a perfect square and the positive difference between them is a perfect cube. Find the greater of the two numbers.

2024 HMNT, 3

Tags:
Suppose that $a,b,$ and $c$ are [i]distinct[/i] positive integers such that $a^bb^c=a^c.$ Across all possible values of $a,b,$ and $c,$ compute the minimum value of $a+b+c.$

2017 239 Open Mathematical Olympiad, 7

Find the greatest possible value of $s>0$, such that for any positive real numbers $a,b,c$, $$(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})^2 \geq s(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}).$$

2012-2013 SDML (Middle School), 2

Tags:
When Lisa squares her favorite $2$-digit number, she gets the same result as when she cubes the sum of the digits of her favorite $2$-digit number. What is Lisa's favorite $2$-digit number?

2017 China Team Selection Test, 6

We call a graph with n vertices $k-flowing-chromatic$ if: 1. we can place a chess on each vertex and any two neighboring (connected by an edge) chesses have different colors. 2. we can choose a hamilton cycle $v_1,v_2,\cdots , v_n$, and move the chess on $v_i$ to $v_{i+1}$ with $i=1,2,\cdots ,n$ and $v_{n+1}=v_1$, such that any two neighboring chess also have different colors. 3. after some action of step 2 we can make all the chess reach each of the n vertices. Let T(G) denote the least number k such that G is k-flowing-chromatic. If such k does not exist, denote T(G)=0. denote $\chi (G)$ the chromatic number of G. Find all the positive number m such that there is a graph G with $\chi (G)\le m$ and $T(G)\ge 2^m$ without a cycle of length small than 2017.

1962 All Russian Mathematical Olympiad, 016

Prove that there are no integers $a,b,c,d$ such that the polynomial $ax^3+bx^2+cx+d$ equals $1$ at $x=19$, and equals $2$ at $x=62$.

2023 HMNT, 2

Tags: geometry
Suppose rectangle $FOLK$ and square $LORE$ are on the plane such that $RL = 12$ and $RK = 11$. Compute the product of all possible areas of triangle $RKL$.

1991 Chile National Olympiad, 1

Determine all nonnegative integer solutions of the equation $2^x-2^y = 1$

2010 Contests, 3

At the meeting, each person is familiar with 22 people. If two persons $A$ and $B$ know each with one another, among the remaining people they do not have a common friend. For each pair individuals $A$ and $B$ are not familiar with each other, there are among the remaining six common acquaintances. How many people were at the meeting?

2021 Latvia Baltic Way TST, P2

Tags: inequalities
Determine all functions $f: \mathbb{R} \backslash \{0 \} \rightarrow \mathbb{R}$ such that, for all nonzero $x$: $$ f(\frac{1}{x}) \ge 1 -f(x) \ge x^2f(x) $$

1998 AIME Problems, 14

Tags:
An $m\times n\times p$ rectangular box has half the volume of an $(m+2)\times(n+2)\times(p+2)$ rectangular box, where $m, n,$ and $p$ are integers, and $m\le n\le p.$ What is the largest possible value of $p$?

2024 Korea Junior Math Olympiad (First Round), 4.

There is a shape like this (Attachment down below) Find the number of triangles made by choosing 3 vertex from the 8 vertex in the attachment.

2018 South Africa National Olympiad, 3

Determine the smallest positive integer $n$ whose prime factors are all greater than $18$, and that can be expressed as $n = a^3 + b^3$ with positive integers $a$ and $b$.

2003 Tournament Of Towns, 5

Two players in turn play a game. First Player has cards with numbers $2, 4, \ldots, 2000$ while Second Player has cards with numbers $1, 3, \ldots, 2001$. In each his turn, a player chooses one of his cards and puts it on a table; the opponent sees it and puts his card next to the first one. Player, who put the card with a larger number, scores 1 point. Then both cards are discarded. First Player starts. After $1000$ turns the game is over; First Player has used all his cards and Second Player used all but one. What are the maximal scores, that players could guarantee for themselves, no matter how the opponent would play?

PEN K Problems, 34

Show that there exists a bijective function $ f: \mathbb{N}_{0}\to \mathbb{N}_{0}$ such that for all $ m,n\in \mathbb{N}_{0}$: \[ f(3mn+m+n)=4f(m)f(n)+f(m)+f(n). \]

2017 Ukrainian Geometry Olympiad, 2

Point $M$ is the midpoint of the base $BC$ of trapezoid $ABCD$. On base $AD$, point $P$ is selected. Line $PM$ intersects line $DC$ at point $Q$, and the perpendicular from $P$ on the bases intersects line $BQ$ at point $K$. Prove that $\angle QBC = \angle KDA$.

Cono Sur Shortlist - geometry, 2003.G1

Let $O$ be the circumcenter of the isosceles triangle $ABC$ ($AB = AC$). Let $P$ be a point of the segment $AO$ and $Q$ the symmetric of $P$ with respect to the midpoint of $AB$. If $OQ$ cuts $AB$ at $K$ and the circle that passes through $A, K$ and $O$ cuts $AC$ in $L$, show that $\angle ALP = \angle CLO$.

2009 ISI B.Math Entrance Exam, 6

Let $a,b,c,d$ be integers such that $ad-bc$ is non zero. Suppose $b_1,b_2$ are integers both of which are multiples of $ad-bc$. Prove that there exist integers simultaneously satisfying both the equalities $ax+by=b_1, cx+dy=b_2$.

2017 Istmo Centroamericano MO, 2

On a $3 \times 3$ board the numbers from $1$ to $9$ are written in some order and without repeating. We say that the arrangement obtained is [i]Isthmian [/i] if the numbers in any two adjacent squares have different parity. Determine the number of different Isthmian arrangements. Note: Two arrangements are considered equal if one can be obtained from the other by rotating the board.

2011 Dutch IMO TST, 4

Determine all integers $n$ for which the polynomial $P(x) = 3x^3-nx-n-2$ can be written as the product of two non-constant polynomials with integer coeffcients.

2024 Princeton University Math Competition, A5 / B7

Call a positive integer [I]nice[/I] if the sum of its even proper divisors is larger than the sum of its odd proper divisors. What is the smallest nice number that is congruent to $2 \text{ mod } 4$?

1978 AMC 12/AHSME, 17

Tags: function
If $k$ is a positive number and $f$ is a function such that, for every positive number $x$, \[\left[f(x^2+1)\right]^{\sqrt{x}}=k;\] then, for every positive number $y$, \[\left[f(\frac{9+y^2}{y^2})\right]^{\sqrt{\frac{12}{y}}}\] is equal to $\textbf{(A) }\sqrt{k}\qquad\textbf{(B) }2k\qquad\textbf{(C) }k\sqrt{k}\qquad\textbf{(D) }k^2\qquad \textbf{(E) }y\sqrt{k}$

2004 AMC 10, 15

Tags: inequalities
Given that $ \minus{} 4\le x\le \minus{} 2$ and $ 2\le y\le 4$, what is the largest possible value of $ (x \plus{} y)/x$? $ \textbf{(A)}\ \minus{}\!1\qquad \textbf{(B)}\ \minus{}\!\frac {1}{2}\qquad \textbf{(C)}\ 0\qquad \textbf{(D)}\ \frac {1}{2}\qquad \textbf{(E)}\ 1$