Found problems: 2265
2022-23 IOQM India, 21
An ant is at vertex of a cube. Every $10$ minutes it moves to an adjacent vertex along an edge. If $N$ is the number of one hour journeys that end at the starting vertex, find the sum of the squares of the digits of $N$.
2012 Princeton University Math Competition, A7
An octahedron (a solid with 8 triangular faces) has a volume of $1040$. Two of the spatial diagonals intersect, and their plane of intersection contains four edges that form a cyclic quadrilateral. The third spatial diagonal is perpendicularly bisected by this plane and intersects the plane at the circumcenter of the cyclic quadrilateral. Given that the side lengths of the cyclic quadrilateral are $7, 15, 24, 20$, in counterclockwise order, the sum of the edge lengths of the entire octahedron can be written in simplest form as $a/b$. Find $a + b$.
2025 Sharygin Geometry Olympiad, 24
The insphere of a tetrahedron $ABCD$ touches the faces $ABC$, $BCD$, $CDA$, $DAB$ at $D^{\prime}$, $A^{\prime}$, $B^{\prime}$, $C^{\prime}$ respectively. Denote by $S_{AB}$ the area of the triangle $AC^{\prime}B^{\prime}$. Define similarly $S_{AC}$, $S_{BC},$ $S_{AD}$, $S_{BD}$, $S_{CD}$. Prove that there exists a triangle with sidelengths $\sqrt{S_{AB}S_{CD}}$, $\sqrt{S_{AC}S_{BD}}$ , $\sqrt{S_{AD}S_{BC}}$.
Proposed by: S.Arutyunyan
VI Soros Olympiad 1999 - 2000 (Russia), 11.3
Three spheres $s_1$, $s_2$, $s_3$ intersect along one circle $\omega$. Let $A $be an arbitrary point lying on the circle $\omega$. Ray $AB$ intersects spheres $s_1$, $s_2$, $s_3$ at points $B_1$, $B_2$, $B_3$, respectively, ray $AC$ intersects spheres $s_1$, $s_2$, $s_3$ at points $C_1$, $C_2$, $C_3$, respectively ($B_i \ne A_i$, $C_i \ne A_i$, $i=1,2,3$). It is known that $B_2$ is the midpoint of the segment $B_1B_3$. Prove that $C_2$ is the midpoint of the segment $C_1C_3$.
2000 Austrian-Polish Competition, 6
Consider the solid $Q$ obtained by attaching unit cubes $Q_1...Q_6$ at the six faces of a unit cube $Q$. Prove or disprove that the space can be filled up with such solids so that no two of them have a common interior point.
2008 AMC 10, 19
A cylindrical tank with radius $ 4$ feet and height $ 9$ feet is lying on its side. The tank is filled with water to a depth of $ 2$ feet. What is the volume of the water, in cubic feet?
$ \textbf{(A)}\ 24\pi \minus{} 36 \sqrt {2} \qquad \textbf{(B)}\ 24\pi \minus{} 24 \sqrt {3} \qquad \textbf{(C)}\ 36\pi \minus{} 36 \sqrt {3} \qquad \textbf{(D)}\ 36\pi \minus{} 24 \sqrt {2} \\ \textbf{(E)}\ 48\pi \minus{} 36 \sqrt {3}$
2020 AMC 10, 10
A three-quarter sector of a circle of radius $4$ inches together with its interior can be rolled up to form the lateral surface area of a right circular cone by taping together along the two radii shown. What is the volume of the cone in cubic inches?
[asy]
draw(Arc((0,0), 4, 0, 270));
draw((0,-4)--(0,0)--(4,0));
label("$4$", (2,0), S);
[/asy]
$\textbf{(A)}\ 3\pi \sqrt5 \qquad\textbf{(B)}\ 4\pi \sqrt3 \qquad\textbf{(C)}\ 3 \pi \sqrt7 \qquad\textbf{(D)}\ 6\pi \sqrt3 \qquad\textbf{(E)}\ 6\pi \sqrt7$
1939 Moscow Mathematical Olympiad, 052
Consider a regular pyramid and a perpendicular to its base at an arbitrary point $P$. Prove that the sum of the lengths of the segments connecting $P$ to the intersection points of the perpendicular with the planes of the pyramid’s faces does not depend on the location of $P$.
2010 AMC 10, 12
Logan is constructing a scaled model of his town. The city's water tower stands $ 40$ meters high, and the top portion is a sphere that holds $ 100,000$ liters of water. Logan's miniature water tower holds $ 0.1$ liters. How tall, in meters, should Logan make his tower?
$ \textbf{(A)}\ 0.04\qquad \textbf{(B)}\ \frac{0.4}{\pi}\qquad \textbf{(C)}\ 0.4\qquad \textbf{(D)}\ \frac{4}{\pi}\qquad \textbf{(E)}\ 4$
2011 Sharygin Geometry Olympiad, 13
a) Find the locus of centroids for triangles whose vertices lie on the sides of a given triangle (each side contains a single vertex).
b) Find the locus of centroids for tetrahedrons whose vertices lie on the faces of a given tetrahedron (each face contains a single vertex).
1992 French Mathematical Olympiad, Problem 3
Let $ABCD$ be a tetrahedron inscribed in a sphere with center $O$, and $G$ and $I$ be its barycenter and incenter respectively. Prove that the following are equivalent:
(i) Points $O$ and $G$ coincide.
(ii) The four faces of the tetrahedron are congruent.
(iii) Points $O$ and $I$ coincide.
2013 Princeton University Math Competition, 8
Three chords of a sphere, each having length $5,6,7$, intersect at a single point inside the sphere and are pairwise perpendicular. For $R$ the maximum possible radius of this sphere, find $R^2$.
2006 Iran MO (3rd Round), 1
A regular polyhedron is a polyhedron that is convex and all of its faces are regular polygons. We call a regular polhedron a "[i]Choombam[/i]" iff none of its faces are triangles.
a) prove that each choombam can be inscribed in a sphere.
b) Prove that faces of each choombam are polygons of at most 3 kinds. (i.e. there is a set $\{m,n,q\}$ that each face of a choombam is $n$-gon or $m$-gon or $q$-gon.)
c) Prove that there is only one choombam that its faces are pentagon and hexagon. (Soccer ball)
[img]http://aycu08.webshots.com/image/5367/2001362702285797426_rs.jpg[/img]
d) For $n>3$, a prism that its faces are 2 regular $n$-gons and $n$ squares, is a choombam. Prove that except these choombams there are finitely many choombams.
1998 Mediterranean Mathematics Olympiad, 2
Prove that the polynomial $z^{2n} + z^n + 1\ (n \in \mathbb{N})$ is divisible by the polynomial $z^2 + z + 1$ if and only if $n$ is not a multiple of $3$.
1985 Bulgaria National Olympiad, Problem 3
A pyramid $MABCD$ with the top-vertex $M$ is circumscribed about a sphere with center $O$ so that $O$ lies on the altitude of the pyramid. Each of the planes $ACM,BDM,ABO$ divides the lateral surface of the pyramid into two parts of equal areas. The areas of the sections of the planes $ACM$ and $ABO$ inside the pyramid are in ratio $(\sqrt2+2):4$. Determine the angle $\delta$ between the planes $ACM$ and $ABO$, and the dihedral angle of the pyramid at the edge $AB$.
II Soros Olympiad 1995 - 96 (Russia), 11.2
A cylindrical glass filled to the brim with water stands on a horizontal plane. The height of the glass is $2$ times the diameter of the base. At what angle must the glass be tilted from the vertical so that exactly $1/3$ of the water it contains pours out?
1976 IMO Longlists, 31
Into every lateral face of a quadrangular pyramid a circle is inscribed. The circles inscribed into adjacent faces are tangent (have one point in common). Prove that the points of contact of the circles with the base of the pyramid lie on a circle.
1962 IMO Shortlist, 7
The tetrahedron $SABC$ has the following property: there exist five spheres, each tangent to the edges $SA, SB, SC, BC, CA, AB,$ or to their extensions.
a) Prove that the tetrahedron $SABC$ is regular.
b) Prove conversely that for every regular tetrahedron five such spheres exist.
2009 AMC 10, 24
Three distinct vertices of a cube are chosen at random. What is the probability that the plane determined by these three vertices contains points inside the cube?
$ \textbf{(A)}\ \frac{1}{4} \qquad
\textbf{(B)}\ \frac{3}{8} \qquad
\textbf{(C)}\ \frac{4}{7} \qquad
\textbf{(D)}\ \frac{5}{7} \qquad
\textbf{(E)}\ \frac{3}{4}$
2010 AMC 10, 17
A solid cube has side length $ 3$ inches. A $ 2$-inch by $ 2$-inch square hole is cut into the center of each face. The edges of each cut are parallel to the edges of the cube, and each hole goes all the way through the cube. What is the volume, in cubic inches, of the remaining solid?
$ \textbf{(A)}\ 7\qquad \textbf{(B)}\ 8\qquad \textbf{(C)}\ 10\qquad \textbf{(D)}\ 12\qquad \textbf{(E)}\ 15$
2017 AMC 12/AHSME, 14
An ice-cream novelty item consists of a cup in the shape of a $4$-inch-tall frustum of a right circular cone, with a $2$-inch-diameter base at the bottom and a $4$-inch-diameter base at the top, packed solid with ice cream, together with a solid cone of ice cream of height $4$ inches, whose base, at the bottom, is the top base of the frustum. What is the total volume of the ice cream, in cubic inches?
$\textbf{(A)}\ 8\pi\qquad\textbf{(B)}\ \frac{28\pi}{3}\qquad\textbf{(C)}\ 12\pi\qquad\textbf{(D)}\ 14\pi\qquad\textbf{(E)}\ \frac{44\pi}{3}$
2008 China Team Selection Test, 3
Determine the greatest positive integer $ n$ such that in three-dimensional space, there exist n points $ P_{1},P_{2},\cdots,P_{n},$ among $ n$ points no three points are collinear, and for arbitary $ 1\leq i < j < k\leq n$, $ P_{i}P_{j}P_{k}$ isn't obtuse triangle.
1999 Romania National Olympiad, 3
Let $ABCDA'B'C'D'$ be a right parallelepiped, $E$ and $F$ the projections of $A$ on the lines $A'D$, $A'C$, respectively, and $P, Q$ the projections of $B'$ on the lines $A'C'$ and $A'C$ Prove that
a) the planes $(AEF)$ and $(B'PQ)$ are parallel
b) the triangles $AEF$ and $B'PQ$ are similar.
1974 Chisinau City MO, 78
Each point of the sphere of radius $r\ge 1$ is colored in one of $n$ colors ($n \ge 2$), and for each color there is a point on the sphere colored in this color. Prove that there are points $A_i$, $B_i$, $i= 1, ..., n$ on the sphere such that the colors of the points $A_1, ..., A_n$ are pairwise different and the color of the point $B_i$ at a distance of $1$ from $A_i$ is different from the color of the point $A_1, i= 1, ..., n$
1997 ITAMO, 4
Let $ABCD$ be a tetrahedron. Let $a$ be the length of $AB$ and let $S$ be the area of the projection of the tetrahedron onto a plane perpendicular to $AB$. Determine the volume of the tetrahedron in terms of $a$ and $S$.