This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 339

1985 Traian Lălescu, 1.3

Let $ G $ be a finite group of odd order having, at least, three elements. For $ a\in G $ denote $ n(a) $ as the number of ways $ a $ can be written as a product of two distinct elements of $ G. $ Prove that $ \sum_{\substack{a\in G\\a\neq\text{id}}} n(a) $ is a perfect square.

2025 All-Russian Olympiad, 9.7

The numbers \( 1, 2, 3, \ldots, 60 \) are written in a row in that exact order. Igor and Ruslan take turns inserting the signs \( +, -, \times \) between them, starting with Igor. Each turn consists of placing one sign. Once all signs are placed, the value of the resulting expression is computed. If the value is divisible by $3$, Igor wins; otherwise, Ruslan wins. Which player has a winning strategy regardless of the opponent’s moves? \\

2013 Miklós Schweitzer, 3

Find for which positive integers $n$ the $A_n$ alternating group has a permutation which is contained in exactly one $2$-Sylow subgroup of $A_n$. [i]Proposed by Péter Pál Pálfy[/i]

1986 Traian Lălescu, 2.2

Prove that $ \left( \left.\left\{\begin{pmatrix} a & b & c \\ 3c & a & b \\ 3b & 3c & a\end{pmatrix} \right| a,b,c\in\mathbb{Q}\right\} ,+,\cdot\right) $ is a field.

1993 Hungary-Israel Binational, 7

In the questions below: $G$ is a finite group; $H \leq G$ a subgroup of $G; |G : H |$ the index of $H$ in $G; |X |$ the number of elements of $X \subseteq G; Z (G)$ the center of $G; G'$ the commutator subgroup of $G; N_{G}(H )$ the normalizer of $H$ in $G; C_{G}(H )$ the centralizer of $H$ in $G$; and $S_{n}$ the $n$-th symmetric group. Assume $|G'| = 2$. Prove that $|G : G'|$ is even.

2016 Fall CHMMC, 13

A sequence of numbers $a_1, a_2 , \dots a_m$ is a [i]geometric sequence modulo n of length m[/i] for $n,m \in \mathbb{Z}^+$ if for every index $i$, $a_i \in \{ 0, 1, 2, \dots , m-1\}$ and there exists an integer $k$ such that $n | a_{j+1} - ka_{j}$ for $1 \leq j \leq m-1$. How many geometric sequences modulo $14$ of length $14$ are there?

2023 District Olympiad, P2

Let $(G,\cdot)$ be a grup with neutral element $e{}$, and let $H{}$ and $K$ be proper subgroups of $G$, satisfying $H\cap K=\{e\}$. It is known that $(G\setminus(H\cup K))\cup\{e\}$ is closed under the operation of $G$. Prove that $x^2=e$ for all the elements $x{}$ of $G{}$.

2025 Korea Winter Program Practice Test, P7

There are $2025$ positive integers $a_1, a_2, \cdots, a_{2025}$ are placed around a circle. For any $k = 1, 2, \cdots, 2025$, $a_k \mid a_{k-1} + a_{k+1}$ where indices are considered modulo $n$. Prove that there exists a positive integer $N$ such that satisfies the following condition. [list] [*] [b](Condition)[/b] For any positive integer $n > N$, when $a_1 = n^n$, $a_1, a_2, \cdots, a_{2025}$ are all multiples of $n$. [/list]

PEN N Problems, 9

Let $ q_{0}, q_{1}, \cdots$ be a sequence of integers such that a) for any $ m > n$, $ m \minus{} n$ is a factor of $ q_{m} \minus{} q_{n}$, b) item $ |q_n| \le n^{10}$ for all integers $ n \ge 0$. Show that there exists a polynomial $ Q(x)$ satisfying $ q_{n} \equal{} Q(n)$ for all $ n$.

2011 District Olympiad, 4

Let be a ring $ A. $ Denote with $ N(A) $ the subset of all nilpotent elements of $ A, $ with $ Z(A) $ the center of $ A, $ and with $ U(A) $ the units of $ A. $ Prove: [b]a)[/b] $ Z(A)=A\implies N(A)+U(A)=U(A) . $ [b]b)[/b] $ \text{card} (A)\in\mathbb{N}\wedge a+U(A)\subset U(A)\implies a\in N(A) . $

2005 VJIMC, Problem 4

Let $R$ ba a finite ring with the following property: for any $a,b\in R$ there exists an element $c\in R$ (depending on $a$ and $b$) such that $a^2+b^2=c^2$. Prove that for any $a,b,c\in R$ there exists $d\in R$ such that $2abc=d^2$. (Here $2abc$ denotes $abc+abc$. The ring $R$ is assumed to be associative, but not necessarily commutative and not necessarily containing a unit.

2012 Centers of Excellency of Suceava, 2

Show that $$ \left\{ X\in\mathcal{M}_2\left( \mathbb{Z}_3 \right)\left| \begin{pmatrix} 1&1\\2&2 \end{pmatrix} X\begin{pmatrix} 1&2\\2&1 \end{pmatrix} =0 \right. \right\} $$ is a multiplicative ring. [i]Cătălin Țigăeru[/i]

2010 District Olympiad, 2

Let $ G$ be a group such that if $ a,b\in \mathbb{G}$ and $ a^2b\equal{}ba^2$, then $ ab\equal{}ba$. i)If $ G$ has $ 2^n$ elements, prove that $ G$ is abelian. ii) Give an example of a non-abelian group with $ G$'s property from the enounce.

2006 District Olympiad, 2

Let $n,p \geq 2$ be two integers and $A$ an $n\times n$ matrix with real elements such that $A^{p+1} = A$. a) Prove that $\textrm{rank} \left( A \right) + \textrm{rank} \left( I_n - A^p \right) = n$. b) Prove that if $p$ is prime then \[ \textrm{rank} \left( I_n - A \right) = \textrm{rank} \left( I_n - A^2 \right) = \ldots = \textrm{rank} \left( I_n - A^{p-1} \right) . \]

2011 Indonesia TST, 2

At a certain mathematical conference, every pair of mathematicians are either friends or strangers. At mealtime, every participant eats in one of two large dining rooms. Each mathematician insists upon eating in a room which contains an even number of his or her friends. Prove that the number of ways that the mathematicians may be split between the two rooms is a power of two (i.e., is of the form $ 2^k$ for some positive integer $ k$).

2017 Danube Mathematical Olympiad, 4

Let us have an infinite grid of unit squares. We write in every unit square a real number, such that the absolute value of the sum of the numbers from any $n*n$ square is less or equal than $1$. Prove that the absolute value of the sum of the numbers from any $m*n$ rectangular is less or equal than $4$.

2007 Miklós Schweitzer, 4

Let $p$ be a prime number and $a_1, \ldots, a_{p-1}$ be not necessarily distinct nonzero elements of the $p$-element $\mathbb Z_p \pmod{p}$ group. Prove that each element of $\mathbb Z_p$ equals a sum of some of the $a_i$'s (the empty sum is $0$). (translated by Miklós Maróti)

2002 Iran Team Selection Test, 10

Suppose from $(m+2)\times(n+2)$ rectangle we cut $4$, $1\times1$ corners. Now on first and last row first and last columns we write $2(m+n)$ real numbers. Prove we can fill the interior $m\times n$ rectangle with real numbers that every number is average of it's $4$ neighbors.

2009 Romania National Olympiad, 2

[b]a)[/b] Show that the set of nilpotents of a finite, commutative ring, is closed under each of the operations of the ring. [b]b)[/b] Prove that the number of nilpotents of a finite, commutative ring, divides the number of divisors of zero of the ring.

2007 IMC, 5

For each positive integer $ k$, find the smallest number $ n_{k}$ for which there exist real $ n_{k}\times n_{k}$ matrices $ A_{1}, A_{2}, \ldots, A_{k}$ such that all of the following conditions hold: (1) $ A_{1}^{2}= A_{2}^{2}= \ldots = A_{k}^{2}= 0$, (2) $ A_{i}A_{j}= A_{j}A_{i}$ for all $ 1 \le i, j \le k$, and (3) $ A_{1}A_{2}\ldots A_{k}\ne 0$.

1981 Miklós Schweitzer, 7

Let $ U$ be a real normed space such that, for an finite-dimensional, real normed space $ X,U$ contains a subspace isometrically isomorphic to $ X$. Prove that every (not necessarily closed) subspace $ V$ of $ U$ of finite codimension has the same property. (We call $ V$ of finite codimension if there exists a finite-dimensional subspace $ N$ of $ U$ such that $ V\plus{}N\equal{}U$.) [i]A. Bosznay[/i]

2002 Iran Team Selection Test, 10

Suppose from $(m+2)\times(n+2)$ rectangle we cut $4$, $1\times1$ corners. Now on first and last row first and last columns we write $2(m+n)$ real numbers. Prove we can fill the interior $m\times n$ rectangle with real numbers that every number is average of it's $4$ neighbors.

2019 Romania National Olympiad, 2

Let $n \geq 4$ be an even natural number and $G$ be a subgroup of $GL_2(\mathbb{C})$ with $|G| = n.$ Prove that there exists $H \leq G$ such that $\{ I_2 \} \neq H$ and $H \neq G$ such that $XYX^{-1} \in H, \: \forall X \in G$ and $\forall Y \in H$

1998 Romania National Olympiad, 2

$\textbf{a) }$ Let $p \geq 2$ be a natural number and $G_p = \bigcup\limits_{n \in \mathbb{N}} \lbrace z \in \mathbb{C} \mid z^{p^n}=1 \rbrace.$ Prove that $(G_p, \cdot)$ is a subgroup of $(\mathbb{C}^*, \cdot).$ $\textbf{b) }$ Let $(H, \cdot)$ be an infinite subgroup of $(\mathbb{C}^*, \cdot).$ Prove that all proper subgroups of $H$ are finite if and only if $H=G_p$ for some prime $p.$

2000 Romania National Olympiad, 4

Prove that a nontrivial finite ring is not a skew field if and only if the equation $ x^n+y^n=z^n $ has nontrivial solutions in this ring for any natural number $ n. $