Found problems: 339
2008 IMC, 5
Does there exist a finite group $ G$ with a normal subgroup $ H$ such that $ |\text{Aut } H| > |\text{Aut } G|$? Disprove or provide an example. Here the notation $ |\text{Aut } X|$ for some group $ X$ denotes the number of isomorphisms from $ X$ to itself.
2007 Today's Calculation Of Integral, 200
Evaluate the following definite integral.
\[\int_{0}^{\pi}\frac{\cos nx}{2-\cos x}dx\ (n=0,\ 1,\ 2,\ \cdots)\]
2010 Miklós Schweitzer, 4
Prove that if $ n \geq 2 $ and $ I_ {1}, I_ {2}, \ldots, I_ {n} $ are idealized in a unit-element commutative ring such that any nonempty $ H \subseteq \{ 1,2, \dots, n \} $ then if $ \sum_ {h \in H} I_ {h} $ Is ideal
$$
I_ {2} I_ {3} I_ {4} \dots I_ {n} + I_ {1} I_ {3} I_ {4} \dots I_ {n} + \dots + I_ {1} I_ {2} \dots I_ {n-1}
$$also Is ideal.
2009 Putnam, B1
Show that every positive rational number can be written as a quotient of products of factorials of (not necessarily distinct) primes. For example, $ \frac{10}9\equal{}\frac{2!\cdot 5!}{3!\cdot 3!\cdot 3!}.$
PEN H Problems, 38
Suppose that $p$ is an odd prime such that $2p+1$ is also prime. Show that the equation $x^{p}+2y^{p}+5z^{p}=0$ has no solutions in integers other than $(0,0,0)$.
2011 Romania National Olympiad, 3
The equation $ x^{n+1} +x=0 $ admits $ 0 $ and $ 1 $ as its unique solutions in a ring of order $ n\ge 2. $
Prove that this ring is a skew field.
2014 IMS, 3
Let $R$ be a commutative ring with $1$ such that the number of elements of $R$ is equal to $p^3$ where $p$ is a prime number. Prove that if the number of elements of $\text{zd}(R)$ be in the form of $p^n$ ($n \in \mathbb{N^*}$) where $\text{zd}(R) = \{a \in R \mid \exists 0 \neq b \in R, ab = 0\}$, then $R$ has exactly one maximal ideal.
1991 Arnold's Trivium, 81
Find the Green's function of the operator $d^2/dx^2-1$ and solve the equation
\[\int_{-\infty}^{+\infty}e^{-|x-y|}u(y)dy=e^{-x^2}\]
2007 Iran MO (3rd Round), 5
A hyper-primitive root is a k-tuple $ (a_{1},a_{2},\dots,a_{k})$ and $ (m_{1},m_{2},\dots,m_{k})$ with the following property:
For each $ a\in\mathbb N$, that $ (a,m) \equal{} 1$, has a unique representation in the following form:
\[ a\equiv a_{1}^{\alpha_{1}}a_{2}^{\alpha_{2}}\dots a_{k}^{\alpha_{k}}\pmod{m}\qquad 1\leq\alpha_{i}\leq m_{i}\]
Prove that for each $ m$ we have a hyper-primitive root.
2010 Laurențiu Panaitopol, Tulcea, 4
Let be a ring $ R $ which has the property that there exist two distinct natural numbers $ s,t $ such that for any element $ x $ of $ R, $ the equation $ x^s=x^t $ is true. Show that there exists a polynom in $ R[X] $ of degree
$$ |s-t|\left( 1+|s-t| \right) $$
such that all the elements of $ R $ are roots of it.
2008 Argentina National Olympiad, 2
In every cell of a $ 60 \times 60$ board is written a real number, whose absolute value is less or equal than $ 1$. The sum of all numbers on the board equals $ 600$.
Prove that there is a $ 12 \times 12$ square in the board such that the absolute value of the sum of all numbers on it is less or equal than $ 24$.
2007 Purple Comet Problems, 15
The alphabet in its natural order $\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$ is $T_0$. We apply a permutation to $T_0$ to get $T_1$ which is $\text{JQOWIPANTZRCVMYEGSHUFDKBLX}$. If we apply the same permutation to $T_1$, we get $T_2$ which is $\text{ZGYKTEJMUXSODVLIAHNFPWRQCB}$. We continually apply this permutation to each $T_m$ to get $T_{m+1}$. Find the smallest positive integer $n$ so that $T_n=T_0$.
2013 Iran Team Selection Test, 2
Find the maximum number of subsets from $\left \{ 1,...,n \right \}$ such that for any two of them like $A,B$ if $A\subset B$ then $\left | B-A \right |\geq 3$. (Here $\left | X \right |$ is the number of elements of the set $X$.)
1969 Miklós Schweitzer, 3
Let $ f(x)$ be a nonzero, bounded, real function on an Abelian group $ G$, $ g_1,...,g_k$ are given elements of $ G$ and $ \lambda_1,...,\lambda_k$ are real numbers. Prove that if \[ \sum_{i=1}^k \lambda_i f(g_ix) \geq 0\] holds for all $ x \in G$, then \[ \sum_{i=1}^k \lambda_i \geq 0.\]
[i]A. Mate[/i]
1977 IMO Shortlist, 13
Let $B$ be a set of $k$ sequences each having $n$ terms equal to $1$ or $-1$. The product of two such sequences $(a_1, a_2, \ldots , a_n)$ and $(b_1, b_2, \ldots , b_n)$ is defined as $(a_1b_1, a_2b_2, \ldots , a_nb_n)$. Prove that there exists a sequence $(c_1, c_2, \ldots , c_n)$ such that the intersection of $B$ and the set containing all sequences from $B$ multiplied by $(c_1, c_2, \ldots , c_n)$ contains at most $\frac{k^2}{2^n}$ sequences.
2003 District Olympiad, 1
Let $(G,\cdot)$ be a finite group with the identity element, $e$. The smallest positive integer $n$ with the property that $x^{n}= e$, for all $x \in G$, is called the [i]exponent[/i] of $G$.
(a) For all primes $p \geq 3$, prove that the multiplicative group $\mathcal G_{p}$ of the matrices of the form $\begin{pmatrix}\hat 1 & \hat a & \hat b \\ \hat 0 & \hat 1 & \hat c \\ \hat 0 & \hat 0 & \hat 1 \end{pmatrix}$, with $\hat a, \hat b, \hat c \in \mathbb Z \slash p \mathbb Z$, is not commutative and has [i]exponent[/i] $p$.
(b) Prove that if $\left( G, \circ \right)$ and $\left( H, \bullet \right)$ are finite groups of [i]exponents[/i] $m$ and $n$, respectively, then the group $\left( G \times H, \odot \right)$ with the operation given by $(g,h) \odot \left( g^\prime, h^\prime \right) = \left( g \circ g^\prime, h \bullet h^\prime \right)$, for all $\left( g,h \right), \, \left( g^\prime, h^\prime \right) \in G \times H$, has the [i]exponent[/i] equal to $\textrm{lcm}(m,n)$.
(c) Prove that any $n \geq 3$ is the [i]exponent[/i] of a finite, non-commutative group.
[i]Ion Savu[/i]
2009 Miklós Schweitzer, 5
Let $ G$ be a finite non-commutative group of order $ t \equal{} 2^nm$, where $ n, m$ are positive and $ m$ is odd. Prove, that if the group contains an element of order $ 2^n$, then
(i) $ G$ is not simple;
(ii) $ G$ contains a normal subgroup of order $ m$.
2020 Miklós Schweitzer, 10
Let $f$ be a polynomial of degree $n$ with integer coefficients and $p$ a prime for which $f$, considered modulo $p$, is a degree-$k$ irreducible polynomial over $\mathbb{F}_p$. Show that $k$ divides the degree of the splitting field of $f$ over $\mathbb{Q}$.
2023 Romania National Olympiad, 1
Let $(G, \cdot)$ a finite group with order $n \in \mathbb{N}^{*},$ where $n \geq 2.$ We will say that group $(G, \cdot)$ is arrangeable if there is an ordering of its elements, such that
\[
G = \{ a_1, a_2, \ldots, a_k, \ldots , a_n \} = \{ a_1 \cdot a_2, a_2 \cdot a_3, \ldots, a_k \cdot a_{k + 1}, \ldots , a_{n} \cdot a_1 \}.
\]
a) Determine all positive integers $n$ for which the group $(Z_n, +)$ is arrangeable.
b) Give an example of a group of even order that is arrangeable.
2010 IMC, 3
Denote by $S_n$ the group of permutations of the sequence $(1,2,\dots,n).$ Suppose that $G$ is a subgroup of $S_n,$ such that for every $\pi\in G\setminus\{e\}$ there exists a unique $k\in \{1,2,\dots,n\}$ for which $\pi(k)=k.$ (Here $e$ is the unit element of the group $S_n.$) Show that this $k$ is the same for all $\pi \in G\setminus \{e\}.$
1966 Miklós Schweitzer, 4
Let $ I$ be an ideal of the ring $\mathbb{Z}\left[x\right]$ of all polynomials with integer coefficients such that
a) the elements of $ I$ do not have a common divisor of degree greater than $ 0$, and
b) $ I$ contains of a polynomial with constant term $ 1$.
Prove that $ I$ contains the polynomial $ 1 + x + x^2 + ... + x^{r-1}$ for some natural number $ r$.
[i]Gy. Szekeres[/i]
2005 Vietnam Team Selection Test, 2
Let $p\in \mathbb P,p>3$. Calcute:
a)$S=\sum_{k=1}^{\frac{p-1}{2}} \left[\frac{2k^2}{p}\right]-2 \cdot \left[\frac{k^2}{p}\right]$ if $ p\equiv 1 \mod 4$
b) $T=\sum_{k=1}^{\frac{p-1}{2}} \left[\frac{k^2}{p}\right]$ if $p\equiv 1 \mod 8$
2014 Contests, 3
Let $R$ be a commutative ring with $1$ such that the number of elements of $R$ is equal to $p^3$ where $p$ is a prime number. Prove that if the number of elements of $\text{zd}(R)$ be in the form of $p^n$ ($n \in \mathbb{N^*}$) where $\text{zd}(R) = \{a \in R \mid \exists 0 \neq b \in R, ab = 0\}$, then $R$ has exactly one maximal ideal.
2006 Germany Team Selection Test, 3
Suppose that $ a_1$, $ a_2$, $ \ldots$, $ a_n$ are integers such that $ n\mid a_1 \plus{} a_2 \plus{} \ldots \plus{} a_n$.
Prove that there exist two permutations $ \left(b_1,b_2,\ldots,b_n\right)$ and $ \left(c_1,c_2,\ldots,c_n\right)$ of $ \left(1,2,\ldots,n\right)$ such that for each integer $ i$ with $ 1\leq i\leq n$, we have
\[ n\mid a_i \minus{} b_i \minus{} c_i
\]
[i]Proposed by Ricky Liu & Zuming Feng, USA[/i]
2014 Miklós Schweitzer, 6
Let $\rho:G\to GL(V)$ be a representation of a finite $p$-group $G$ over a field of characteristic $p$. Prove that if the restriction of the linear map $\sum_{g\in G} \rho(g)$ to a finite dimensional subspace $W$ of $V$ is injective, then the subspace spanned by the subspaces $\rho(g)W$ $(g\in G)$ is the direct sum of these subspaces.