This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 79

1968 Miklós Schweitzer, 10

Let $ h$ be a triangle of perimeter $ 1$, and let $ H$ be a triangle of perimeter $ \lambda$ homothetic to $ h$. Let $ h_1,h_2,...$ be translates of $ h$ such that , for all $ i$, $ h_i$ is different from $ h_{i\plus{}2}$ and touches $ H$ and $ h_{i\plus{}1}$ (that is, intersects without overlapping). For which values of $ \lambda$ can these triangles be chosen so that the sequence $ h_1,h_2,...$ is periodic? If $ \lambda \geq 1$ is such a value, then determine the number of different triangles in a periodic chain $ h_1,h_2,...$ and also the number of times such a chain goes around the triangle $ H$. [i]L. Fejes-Toth[/i]

2009 Miklós Schweitzer, 7

Let $ H$ be an arbitrary subgroup of the diffeomorphism group $ \mathsf{Diff}^\infty(M)$ of a differentiable manifold $ M$. We say that an $ \mathcal C^\infty$-vector field $ X$ is [i]weakly tangent[/i] to the group $ H$, if there exists a positive integer $ k$ and a $ \mathcal C^\infty$-differentiable map $ \varphi \mathrel{: } \mathord{]} \minus{} \varepsilon,\varepsilon\mathord{[}^k\times M\to M$ such that (i) for fixed $ t_1,\dots,t_k$ the map \[ \varphi_{t_1,\dots,t_k} : x\in M\mapsto \varphi(t_1,\dots,t_k,x)\] is a diffeomorphism of $ M$, and $ \varphi_{t_1,\dots,t_k}\in H$; (ii) $ \varphi_{t_1,\dots,t_k}\in H \equal{} \mathsf{Id}$ whenever $ t_j \equal{} 0$ for some $ 1\leq j\leq k$; (iii) for any $ \mathcal C^\infty$-function $ f: M\to \mathbb R$ \[ X f \equal{} \left.\frac {\partial^k(f\circ\varphi_{t_1,\dots,t_k})}{\partial t_1\dots\partial t_k}\right|_{(t_1,\dots,t_k) \equal{} (0,\dots,0)}.\] Prove, that the commutators of $ \mathcal C^\infty$-vector fields that are weakly tangent to $ H\subset \textsf{Diff}^\infty(M)$ are also weakly tangent to $ H$.

1966 Miklós Schweitzer, 2

Characterize those configurations of $ n$ coplanar straight lines for which the sum of angles between all pairs of lines is maximum. [i]L.Fejes-Toth, A. Heppes[/i]

1972 Miklós Schweitzer, 3

Let $ \lambda_i \;(i=1,2,...)$ be a sequence of distinct positive numbers tending to infinity. Consider the set of all numbers representable in the form \[ \mu= \sum_{i=1}^{\infty}n_i\lambda_i ,\] where $ n_i \geq 0$ are integers and all but finitely many $ n_i$ are $ 0$. Let \[ L(x)= \sum _{\lambda_i \leq x} 1 \;\textrm{and}\ \;M(x)= \sum _{\mu \leq x} 1 \ .\] (In the latter sum, each $ \mu$ occurs as many times as its number of representations in the above form.) Prove that if \[ \lim_{x\rightarrow \infty} \frac{L(x+1)}{L(x)}=1,\] then \[ \lim_{x\rightarrow \infty} \frac{M(x+1)}{M(x)}=1.\] [i]G. Halasz[/i]