This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2019 LMT Fall, Individual

[b]p1.[/b] For positive real numbers $x, y$, the operation $\otimes$ is given by $x \otimes y =\sqrt{x^2 - y}$ and the operation $\oplus$ is given by $x \oplus y =\sqrt{x^2 + y}$. Compute $(((5\otimes 4)\oplus 3)\otimes2)\oplus 1$. [b]p2.[/b] Janabel is cutting up a pizza for a party. She knows there will either be $4$, $5$, or $6$ people at the party including herself, but can’t remember which. What is the least number of slices Janabel can cut her pizza to guarantee that everyone at the party will be able to eat an equal number of slices? [b]p3.[/b] If the numerator of a certain fraction is added to the numerator and the denominator, the result is $\frac{20}{19}$ . What is the fraction? [b]p4.[/b] Let trapezoid $ABCD$ be such that $AB \parallel CD$. Additionally, $AC = AD = 5$, $CD = 6$, and $AB = 3$. Find $BC$. [b]p5.[/b] AtMerrick’s Ice Cream Parlor, customers can order one of three flavors of ice cream and can have their ice cream in either a cup or a cone. Additionally, customers can choose any combination of the following three toppings: sprinkles, fudge, and cherries. How many ways are there to buy ice cream? [b]p6.[/b] Find the minimum possible value of the expression $|x+1|+|x-4|+|x-6|$. [b]p7.[/b] How many $3$ digit numbers have an even number of even digits? [b]p8.[/b] Given that the number $1a99b67$ is divisible by $7$, $9$, and $11$, what are $a$ and $b$? Express your answer as an ordered pair. [b]p9.[/b] Let $O$ be the center of a quarter circle with radius $1$ and arc $AB$ be the quarter of the circle’s circumference. Let $M$,$N$ be the midpoints of $AO$ and $BO$, respectively. Let $X$ be the intersection of $AN$ and $BM$. Find the area of the region enclosed by arc $AB$, $AX$,$BX$. [b]p10.[/b] Each square of a $5$-by-$1$ grid of squares is labeled with a digit between $0$ and $9$, inclusive, such that the sum of the numbers on any two adjacent squares is divisible by $3$. How many such labelings are possible if each digit can be used more than once? [b]p11.[/b] A two-digit number has the property that the difference between the number and the sum of its digits is divisible by the units digit. If the tens digit is $5$, how many different possible values of the units digit are there? [b]p12.[/b] There are $2019$ red balls and $2019$ white balls in a jar. One ball is drawn and replaced with a ball of the other color. The jar is then shaken and one ball is chosen. What is the probability that this ball is red? [b]p13.[/b] Let $ABCD$ be a square with side length $2$. Let $\ell$ denote the line perpendicular to diagonal $AC$ through point $C$, and let $E$ and $F$ be themidpoints of segments $BC$ and $CD$, respectively. Let lines $AE$ and $AF$ meet $\ell$ at points $X$ and $Y$ , respectively. Compute the area of $\vartriangle AXY$ . [b]p14.[/b] Express $\sqrt{21-6\sqrt6}+\sqrt{21+6\sqrt6}$ in simplest radical form. [b]p15.[/b] Let $\vartriangle ABC$ be an equilateral triangle with side length two. Let $D$ and $E$ be on $AB$ and $AC$ respectively such that $\angle ABE =\angle ACD = 15^o$. Find the length of $DE$. [b]p16.[/b] $2018$ ants walk on a line that is $1$ inch long. At integer time $t$ seconds, the ant with label $1 \le t \le 2018$ enters on the left side of the line and walks among the line at a speed of $\frac{1}{t}$ inches per second, until it reaches the right end and walks off. Determine the number of ants on the line when $t = 2019$ seconds. [b]p17.[/b] Determine the number of ordered tuples $(a_1,a_2,... ,a_5)$ of positive integers that satisfy $a_1 \le a_2 \le ... \le a_5 \le 5$. [b]p18.[/b] Find the sum of all positive integer values of $k$ for which the equation $$\gcd (n^2 -n -2019,n +1) = k$$ has a positive integer solution for $n$. [b]p19.[/b] Let $a_0 = 2$, $b_0 = 1$, and for $n \ge 0$, let $$a_{n+1} = 2a_n +b_n +1,$$ $$b_{n+1} = a_n +2b_n +1.$$ Find the remainder when $a_{2019}$ is divided by $100$. [b]p20.[/b] In $\vartriangle ABC$, let $AD$ be the angle bisector of $\angle BAC$ such that $D$ is on segment $BC$. Let $T$ be the intersection of ray $\overrightarrow{CB}$ and the line tangent to the circumcircle of $\vartriangle ABC$ at $A$. Given that $BD = 2$ and $TC = 10$, find the length of $AT$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2021 239 Open Mathematical Olympiad, 1

You are given $n$ different primes $p_1, p_2,..., p_n$. Consider the polynomial $$x^n + a_1x^{n -1} + a_2x^{n - 2} + ...+ a_{n - 1}x + a_n$$, where $a_i$ is the product of the first $i$ given prime numbers. For what $n$ can it have an integer root?

2012 Indonesia Juniors, day 2

p1. One day, a researcher placed two groups of species that were different, namely amoeba and bacteria in the same medium, each in a certain amount (in unit cells). The researcher observed that on the next day, which is the second day, it turns out that every cell species divide into two cells. On the same day every cell amoeba prey on exactly one bacterial cell. The next observation carried out every day shows the same pattern, that is, each cell species divides into two cells and then each cell amoeba prey on exactly one bacterial cell. Observation on day $100$ shows that after each species divides and then each amoeba cell preys on exactly one bacterial cell, it turns out kill bacteria. Determine the ratio of the number of amoeba to the number of bacteria on the first day. p2. It is known that $n$ is a positive integer. Let $f(n)=\frac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}}$. Find $f(13) + f(14) + f(15) + ...+ f(112).$ p3. Budi arranges fourteen balls, each with a radius of $10$ cm. The first nine balls are placed on the table so that form a square and touch each other. The next four balls placed on top of the first nine balls so that they touch each other. The fourteenth ball is placed on top of the four balls, so that it touches the four balls. If Bambang has fifty five balls each also has a radius of $10$ cm and all the balls are arranged following the pattern of the arrangement of the balls made by Budi, calculate the height of the center of the topmost ball is measured from the table surface in the arrangement of the balls done by Bambang. p4. Given a triangle $ABC$ whose sides are $5$ cm, $ 8$ cm, and $\sqrt{41}$ cm. Find the maximum possible area of ​​the rectangle can be made in the triangle $ABC$. p5. There are $12$ people waiting in line to buy tickets to a show with the price of one ticket is $5,000.00$ Rp.. Known $5$ of them they only have $10,000$ Rp. in banknotes and the rest is only has a banknote of $5,000.00$ Rp. If the ticket seller initially only has $5,000.00$ Rp., what is the probability that the ticket seller have enough change to serve everyone according to their order in the queue?

1982 Austrian-Polish Competition, 3

If $n \ge 2$ is an integer, prove the equality $$\prod_{k=1}^n \tan \frac{\pi}{3}\left(1+\frac{3^k}{3^n-1}\right)=\prod_{k=1}^n \cot \frac{\pi}{3}\left(1-\frac{3^k}{3^n-1}\right)$$

2002 Baltic Way, 3

Find all sequences $0\le a_0\le a_1\le a_2\le \ldots$ of real numbers such that \[a_{m^2+n^2}=a_m^2+a_n^2 \] for all integers $m,n\ge 0$.

1984 Putnam, A2

Express $\sum_{k=1}^\infty\frac{6^k}{(3^{k+1}-2^{k+1})(3^k-2^k)}$ as a rational number.

2006 Iran MO (3rd Round), 5

A calculating ruler is a ruler for doing algebric calculations. This ruler has three arms, two of them are sationary and one can move freely right and left. Each of arms is gradient. Gradation of each arm depends on the algebric operation ruler does. For eaxample the ruler below is designed for multiplying two numbers. Gradations are logarithmic. [img]http://aycu05.webshots.com/image/5604/2000468517162383885_rs.jpg[/img] For working with ruler, (e.g for calculating $x.y$) we must move the middle arm that the arrow at the beginning of its gradation locate above the $x$ in the lower arm. We find $y$ in the middle arm, and we will read the number on the upper arm. The number written on the ruler is the answer. 1) Design a ruler for calculating $x^{y}$. Grade first arm ($x$) and ($y$) from 1 to 10. 2) Find all rulers that do the multiplication in the interval $[1,10]$. 3) Prove that there is not a ruler for calculating $x^{2}+xy+y^{2}$, that its first and second arm are grade from 0 to 10.

2018 MMATHS, Mixer Round

[b]p1.[/b] Suppose $\frac{x}{y} = 0.\overline{ab}$ where $x$ and $y$ are relatively prime positive integers and $ab + a + b + 1$ is a multiple of $12$. Find the sum of all possible values of $y$. [b]p2.[/b] Let $A$ be the set of points $\{(0, 0), (2, 0), (0, 2),(2, 2),(3, 1),(1, 3)\}$. How many distinct circles pass through at least three points in $A$? [b]p3.[/b] Jack and Jill need to bring pails of water home. The river is the $x$-axis, Jack is initially at the point $(-5, 3)$, Jill is initially at the point $(6, 1)$, and their home is at the point $(0, h)$ where $h > 0$. If they take the shortest paths home given that each of them must make a stop at the river, they walk exactly the same total distance. What is $h$? [b]p4.[/b] What is the largest perfect square which is not a multiple of $10$ and which remains a perfect square if the ones and tens digits are replaced with zeroes? [b]p5.[/b] In convex polygon $P$, each internal angle measure (in degrees) is a distinct integer. What is the maximum possible number of sides $P$ could have? [b]p6.[/b] How many polynomials $p(x)$ of degree exactly $3$ with real coefficients satisfy $$p(0), p(1), p(2), p(3) \in \{0, 1, 2\}?$$ [b]p7.[/b] Six spheres, each with radius $4$, are resting on the ground. Their centers form a regular hexagon, and adjacent spheres are tangent. A seventh sphere, with radius $13$, rests on top of and is tangent to all six of these spheres. How high above the ground is the center of the seventh sphere? [b]p8.[/b] You have a paper square. You may fold it along any line of symmetry. (That is, the layers of paper must line up perfectly.) You then repeat this process using the folded piece of paper. If the direction of the folds does not matter, how many ways can you make exactly eight folds while following these rules? [b]p9.[/b] Quadrilateral $ABCD$ has $\overline{AB} = 40$, $\overline{CD} = 10$, $\overline{AD} = \overline{BC}$, $m\angle BAD = 20^o$, and $m \angle ABC = 70^o$. What is the area of quadrilateral $ABCD$? [b]p10.[/b] We say that a permutation $\sigma$ of the set $\{1, 2,..., n\}$ preserves divisibilty if $\sigma (a)$ divides $\sigma (b)$ whenever $a$ divides $b$. How many permutations of $\{1, 2,..., 40\}$ preserve divisibility? (A permutation of $\{1, 2,..., n\}$ is a function $\sigma$ from $\{1, 2,..., n\}$ to itself such that for any $b \in \{1, 2,..., n\}$, there exists some $a \in \{1, 2,..., n\}$ satisfying $\sigma (a) = b$.) [b]p11.[/b] In the diagram shown at right, how many ways are there to remove at least one edge so that some circle with an “A” and some circle with a “B” remain connected? [img]https://cdn.artofproblemsolving.com/attachments/8/7/fde209c63cc23f6d3482009cc6016c7cefc868.png[/img] [b]p12.[/b] Let $S$ be the set of the $125$ points in three-dimension space of the form $(x, y, z)$ where $x$, $y$, and $z$ are integers between $1$ and $5$, inclusive. A family of snakes lives at the point $(1, 1, 1)$, and one day they decide to move to the point $(5, 5, 5)$. Snakes may slither only in increments of $(1,0,0)$, $(0, 1, 0)$, and $(0, 0, 1)$. Given that at least one snake has slithered through each point of $S$ by the time the entire family has reached $(5, 5, 5)$, what is the smallest number of snakes that could be in the family? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2006 Germany Team Selection Test, 2

Find all functions $ f: \mathbb{R}\to\mathbb{R}$ such that $ f(x+y)+f(x)f(y)=f(xy)+2xy+1$ for all real numbers $ x$ and $ y$. [i]Proposed by B.J. Venkatachala, India[/i]

2011 Baltic Way, 3

A sequence $a_1,a_2,a_3,\ldots $ of non-negative integers is such that $a_{n+1}$ is the last digit of $a_n^n+a_{n-1}$ for all $n>2$. Is it always true that for some $n_0$ the sequence $a_{n_0},a_{n_0+1},a_{n_0+2},\ldots$ is periodic?

2008 Alexandru Myller, 2

Solve in integers the equation $x^6+x^5+4=y^2. $ [i]Ioan Cucurezeanu[/i]

2022 Auckland Mathematical Olympiad, 1

Tags: algebra
Each of the $10$ dwarfs either always tells the truth or always lies. It is known that each of them loves exactly one type of ice cream: vanilla, chocolate or fruit. First, Snow White asked those who like the vanilla ice cream to raise their hands, and everyone raised their hands, then those who like chocolate ice cream - and half of the dwarves raised their hands, then those who like the fruit ice cream - and only one dwarf raised his hand. How many of the gnomes are truthful?

2002 Singapore MO Open, 4

Find all real-valued functions $f : Q \to R$ defined on the set of all rational numbers $Q$ satisfying the conditions $f(x + y) = f(x) + f(y) + 2xy$ for all $x, y$ in $Q$ and $f(1) = 2002.$ Justify your answers.

2013 IMAC Arhimede, 6

Let $p$ be an odd positive integer. Find all values of the natural numbers $n\ge 2$ for which holds $$\sum_{i=1}^{n} \prod_{j\ne i} (x_i-x_j)^p\ge 0$$ where $x_1,x_2,..,x_n$ are any real numbers.

2024 Israel TST, P3

Let $n$ be a positive integer and $p$ be a prime number of the form $8k+5$. A polynomial $Q$ of degree at most $2023$ and nonnegative integer coefficients less than or equal to $n$ will be called "cool" if \[p\mid Q(2)\cdot Q(3) \cdot \ldots \cdot Q(p-2)-1.\] Prove that the number of cool polynomials is even.

2023 Romanian Master of Mathematics Shortlist, N2

For every non-negative integer $k$ let $S(k)$ denote the sum of decimal digits of $k$. Let $P(x)$ and $Q(x)$ be polynomials with non-negative integer coecients such that $S(P(n)) = S(Q(n))$ for all non-negative integers $n$. Prove that there exists an integer $t$ such that $P(x) - 10^tQ(x)$ is a constant polynomial.

2019 Math Hour Olympiad, 8-10

[u]Round 1[/u] [b]p1.[/b] The alphabet of the Aau-Bau language consists of two letters: A and B. Two words have the same meaning if one of them can be constructed from the other by replacing any AA with A, replacing any BB with B, or by replacing any ABA with BAB. For example, the word AABA means the same thing as ABA, and AABA also means the same thing as ABAB. In this language, is it possible to name all seven days of the week? [b]p2.[/b] A museum has a $4\times 4$ grid of rooms. Every two rooms that share a wall are connected by a door. Each room contains some paintings. The total number of paintings along any path of $7$ rooms from the lower left to the upper right room is always the same. Furthermore, the total number of paintings along any path of $7$ rooms from the lower right to the upper left room is always the same. The guide states that the museum has exactly $500$ paintings. Show that the guide is mistaken. [img]https://cdn.artofproblemsolving.com/attachments/7/6/0fd93a0deaa71a5bb1599d2488f8b4eac5d0eb.jpg[/img] [b]p3.[/b] A playground has a swing-set with exactly three swings. When 3rd and 4th graders from Dr. Anna’s math class play during recess, she has a rule that if a $3^{rd}$ grader is in the middle swing there must be $4^{th}$ graders on that person’s left and right. And if there is a $4^{th}$ grader in the middle, there must be $3^{rd}$ graders on that person’s left and right. Dr. Anna calculates that there are $350$ different ways her students can arrange themselves on the three swings with no empty seats. How many students are in her class? [img]https://cdn.artofproblemsolving.com/attachments/5/9/4c402d143646582376d09ebbe54816b8799311.jpg[/img] [b]p4.[/b] The archipelago Artinagos has $19$ islands. Each island has toll bridges to at least $3$ other islands. An unsuspecting driver used a bad mapping app to plan a route from North Noether Island to South Noether Island, which involved crossing $12$ bridges. Show that there must be a route with fewer bridges. [img]https://cdn.artofproblemsolving.com/attachments/e/3/4eea2c16b201ff2ac732788fe9b78025004853.jpg[/img] [b]p5.[/b] Is it possible to place the numbers from $1$ to $121$ in an $11\times 11$ table so that numbers that differ by $1$ are in horizontally or vertically adjacent cells and all the perfect squares $(1, 4, 9, ... , 121)$ are in one column? [u]Round 2[/u] [b]p6.[/b] Hungry and Sneaky have opened a rectangular box of chocolates and are going to take turns eating them. The chocolates are arranged in a $2m \times 2n$ grid. Hungry can take any two chocolates that are side-by-side, but Sneaky can take only one at a time. If there are no more chocolates located side-by-side, all remaining chocolates go to Sneaky. Hungry goes first. Each player wants to eat as many chocolates as possible. What is the maximum number of chocolates Sneaky can get, no matter how Hungry picks his? [img]https://cdn.artofproblemsolving.com/attachments/b/4/26d7156ca6248385cb46c6e8054773592b24a3.jpg[/img] [b]p7.[/b] There is a thief hiding in the sultan’s palace. The palace contains $2019$ rooms connected by doors. One can walk from any room to any other room, possibly through other rooms, and there is only one way to do this. That is, one cannot walk in a loop in the palace. To catch the thief, a guard must be in the same room as the thief at the same time. Prove that $11$ guards can always find and catch the thief, no matter how the thief moves around during the search. [img]https://cdn.artofproblemsolving.com/attachments/a/b/9728ac271e84c4954935553c4d58b3ff4b194d.jpg[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2023 Estonia Team Selection Test, 2

Let $n$ be a positive integer. Find all polynomials $P$ with real coefficients such that $$P(x^2+x-n^2)=P(x)^2+P(x)$$ for all real numbers $x$.

2022 Argentina National Olympiad Level 2, 1

Tags: algebra
Find all real numbers $x$ such that exactly one of the four numbers $x-\sqrt 2$, $x-\dfrac{1}{x}$, $x+\dfrac{1}{x}$ and $x^2+2\sqrt{2}$ is [b]not[/b] an integer.

1976 Dutch Mathematical Olympiad, 4

For $a,b, x \in R$ holds: $x^2 - (2a^2 + 4)x + a^2 + 2a + b = 0$. For which $b$ does this equation have at least one root between $0$ and $1$ for all $a$?

2019 CMIMC, 1

Let $a_1$, $a_2$, $\ldots$, $a_n$ be a geometric progression with $a_1 = \sqrt{2}$ and $a_2 = \sqrt[3]{3}$. What is \[\displaystyle{\frac{a_1+a_{2013}}{a_7+a_{2019}}}?\]

2011 USAMTS Problems, 2

Let $x$ be a complex number such that $x^{2011}=1$ and $x\neq 1$. Compute the sum \[\dfrac{x^2}{x-1}+\dfrac{x^4}{x^2-1}+\dfrac{x^6}{x^3-1}+\cdots+\dfrac{x^{4020}}{x^{2010}-1}.\]

2010 Greece Team Selection Test, 1

Tags: algebra
Solve in positive reals the system: $x+y+z+w=4$ $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{w}=5-\frac{1}{xyzw}$

2008 China Girls Math Olympiad, 6

Tags: algebra
Let $ (x_1,x_2,\cdots)$ be a sequence of positive numbers such that $ (8x_2 \minus{} 7x_1)x_1^7 \equal{} 8$ and \[ x_{k \plus{} 1}x_{k \minus{} 1} \minus{} x_k^2 \equal{} \frac {x_{k \minus{} 1}^8 \minus{} x_k^8}{x_k^7x_{k \minus{} 1}^7} \text{ for }k \equal{} 2,3,\ldots \] Determine real number $ a$ such that if $ x_1 > a$, then the sequence is monotonically decreasing, and if $ 0 < x_1 < a$, then the sequence is not monotonic.

1997 All-Russian Olympiad, 1

Let $P(x)$ be a quadratic polynomial with nonnegative coeficients. Show that for any real numbers $x$ and $y$, we have the inequality $P(xy)^2 \leqslant P(x^2)P(y^2)$. [i]E. Malinnikova[/i]