This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

Sri Lankan Mathematics Challenge Competition 2022, P3

[b]Problem 3[/b] : Let $x_1,x_2,\cdots,x_{2022}$ be non-negative real numbers such that $$x_k + x_{k+1}+x_{k+2} \leq 2$$ for all $k = 1,2,\cdots,2020$. Prove that $$\sum_{k=1}^{2020}x_kx_{k+2}\leq 1010$$

2007 JBMO Shortlist, 5

The real numbers $x,y,z, m, n$ are positive, such that $m + n \ge 2$. Prove that $x\sqrt{yz(x + my)(x + nz)} + y\sqrt{xz(y + mx)(y + nz)} + z\sqrt{xy(z + mx)(x + ny) }\le \frac{3(m + n)}{8} (x + y)(y + z)(z + x)$

2016 CMIMC, 5

Tags: algebra
The parabolas $y=x^2+15x+32$ and $x = y^2+49y+593$ meet at one point $(x_0,y_0)$. Find $x_0+y_0$.

2019 Polish Junior MO Finals, 3.

Tags: algebra
Let $x$, $y$, $z$ be non-zero real numbers, such that $x + y + z = 0$ and the numbers $$ \frac{x}{y} + \frac{y}{z} + \frac{z}{x} \quad \text{and} \quad \frac{x}{z} + \frac{z}{y} + \frac{y}{x} + 1 $$ are equal. Determine their common value.

LMT Speed Rounds, 22

Consider all pairs of points $(a,b,c)$ and $(d,e, f )$ in the $3$-D coordinate system with $ad +be +c f = -2023$. What is the least positive integer that can be the distance between such a pair of points? [i]Proposed by William Hua[/i]

2020 LMT Fall, B5

Tags: algebra
Given the following system of equations $a_1 + a_2 + a_3 = 1$ $a_2 + a_3 + a_4 = 2$ $a_3 + a_4 + a_5 = 3$ $...$ $a_{12} + a_{13} + a_{14} = 12$ $a_{13} + a_{14} + a_1 = 13$ $a_{14 }+ a_1 + a_2 = 14$ find the value of $a_{14}$.

1987 Bulgaria National Olympiad, Problem 1

Let $f(x)=x^n+a_1x^{n-1}+\ldots+a_n~(n\ge3)$ be a polynomial with real coefficients and $n$ real roots, such that $\frac{a_{n-1}}{a_n}>n+1$. Prove that if $a_{n-2}=0$, then at least one root of $f(x)$ lies in the open interval $\left(-\frac12,\frac1{n+1}\right)$.

1994 Bundeswettbewerb Mathematik, 4

Let $a,b$ be real numbers ($b\ne 0$) and consider the infinite arithmetic sequence $a, a+b ,a +2b , \ldots.$ Show that this sequence contains an infinite geometric subsequence if and only if $\frac{a}{b}$ is rational.

2002 USAMTS Problems, 4

Let $f(n)$ be the number of ones that occur in the decimal representations of all the numbers from 1 to $n$. For example, this gives $f(8)=1$, $f(9)=1$, $f(10)=2$, $f(11)=4$, and $f(12)=5$. Determine the value of $f(10^{100})$.

2017 BMT Spring, 8

The numerical value of the following integral $$\int^1_0 (-x^2 + x)^{2017} \lfloor 2017x \rfloor dx$$ can be expressed in the form $a\frac{m!^2}{ n!}$ where a is minimized. Find $a + m + n$. (Note $\lfloor x\rfloor$ is the largest integer less than or equal to x.)

1989 IMO Longlists, 10

Tags: algebra
Given the equation \[ 4x^3 \plus{} 4x^2y \minus{} 15xy^2 \minus{} 18y^3 \minus{} 12x^2 \plus{} 6xy \plus{} 36y^2 \plus{} 5x \minus{} 10y \equal{} 0,\] find all positive integer solutions.

1978 IMO Longlists, 2

If \[f(x) = (x + 2x^2 +\cdots+ nx^n)^2 = a_2x^2 + a_3x^3 + \cdots+ a_{2n}x^{2n},\] prove that \[a_{n+1} + a_{n+2} + \cdots + a_{2n} =\dbinom{n + 1}{2}\frac{5n^2 + 5n + 2}{12}\]

2024 Pan-African, 5

Let \( \mathbb{R} \) denote the set of real numbers. Find all functions \( f: \mathbb{R} \to \mathbb{R} \) such that \[ f(x^2) - y f(y) = f(x+y)(f(x) - y) \] for all real numbers \( x \) and \( y \).

2018 Purple Comet Problems, 3

Tags: algebra
The fraction $$\left(\frac{\frac13+1}{3} +\frac{1+ \frac13}{3} \right) / \left(\frac{3}{\frac{1}{3+1}+\frac{ 1}{1+3}}\right)$$ can be written as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

1969 IMO Longlists, 69

$(YUG 1)$ Suppose that positive real numbers $x_1, x_2, x_3$ satisfy $x_1x_2x_3 > 1, x_1 + x_2 + x_3 <\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}$ Prove that: $(a)$ None of $x_1, x_2, x_3$ equals $1$. $(b)$ Exactly one of these numbers is less than $1.$

2015 South East Mathematical Olympiad, 5

Tags: algebra
Suppose that $a,b$ are real numbers, function $f(x) = ax+b$ satisfies $\mid f(x) \mid \leq 1$ for any $x \in [0,1]$. Find the range of values of $S= (a+1)(b+1).$

2019 India Regional Mathematical Olympiad, 1

Suppose $x$ is a non zero real number such that both $x^5$ and $20x+\frac{19}{x}$ are rational numbers. Prove that $x$ is a rational number.

2019 China Girls Math Olympiad, 2

Find integers $a_1,a_2,\cdots,a_{18}$, s.t. $a_1=1,a_2=2,a_{18}=2019$, and for all $3\le k\le 18$, there exists $1\le i<j<k$ with $a_k=a_i+a_j$.

VI Soros Olympiad 1999 - 2000 (Russia), 11.1

Solve the system of equations $$\begin{cases} x^2+arc siny =y^2+arcsin x \\ x^2+y^2-3x=2y\sqrt{x^2-2x-y}+1 \end{cases}$$

2017 Peru MO (ONEM), 3

The infinity sequence $r_{1},r_{2},...$ of rational numbers it satisfies that: $\prod_{i=1}^ {k}r_{i}=\sum_{i=1}^{k} r_{i}$. For all natural k. Show that $\frac{1}{r_{n}}-\frac{3}{4}$ is a square of rationale number for all natural $n\geq3$

2023 All-Russian Olympiad, 7

We call a polynomial $P(x)$ good if the numbers $P(k)$ and $P'(k)$ are integers for all integers $k$. Let $P(x)$ be a good polynomial of degree $d$, and let $N_d$ be the product of all composite numbers not exceeding $d$. Prove that the leading coefficient of the polynomial $N_d \cdot P(x)$ is integer.

2009 USA Team Selection Test, 7

Find all triples $ (x,y,z)$ of real numbers that satisfy the system of equations \[ \begin{cases}x^3 \equal{} 3x\minus{}12y\plus{}50, \\ y^3 \equal{} 12y\plus{}3z\minus{}2, \\ z^3 \equal{} 27z \plus{} 27x. \end{cases}\] [i]Razvan Gelca.[/i]

2016 Hanoi Open Mathematics Competitions, 9

Let rational numbers $a, b, c$ satisfy the conditions $a + b + c = a^2 + b^2 + c^2 \in Z$. Prove that there exist two relative prime numbers $m, n$ such that $abc =\frac{m^2}{n^3}$ .

2013 Online Math Open Problems, 42

Find the remainder when \[\prod_{i=0}^{100}(1-i^2+i^4)\] is divided by $101$. [i]Victor Wang[/i]

2012 LMT, Individual

[b]p1[/b]. Evaluate $1! + 2! + 3! + 4! + 5! $ (where $n!$ is the product of all integers from $1$ to $n$, inclusive). [b]p2.[/b] Harold opens a pack of Bertie Bott's Every Flavor Beans that contains $10$ blueberry, $10$ watermelon, $3$ spinach and $2$ earwax-flavored jelly beans. If he picks a jelly bean at random, then what is the probability that it is not spinach-flavored? [b]p3.[/b] Find the sum of the positive factors of $32$ (including $32$ itself). [b]p4.[/b] Carol stands at a flag pole that is $21$ feet tall. She begins to walk in the direction of the flag's shadow to say hi to her friends. When she has walked $10$ feet, her shadow passes the flag's shadow. Given that Carol is exactly $5$ feet tall, how long in feet is her shadow? [b]p5.[/b] A solid metal sphere of radius $7$ cm is melted and reshaped into four solid metal spheres with radii $1$, $5$, $6$, and $x$ cm. What is the value of $x$? [b]p6.[/b] Let $A = (2,-2)$ and $B = (-3, 3)$. If $(a,0)$ and $(0, b)$ are both equidistant from $A$ and $B$, then what is the value of $a + b$? [b]p7.[/b] For every flip, there is an $x^2$ percent chance of flipping heads, where $x$ is the number of flips that have already been made. What is the probability that my first three flips will all come up tails? [b]p8.[/b] Consider the sequence of letters $Z\,\,W\,\,Y\,\,X\,\,V$. There are two ways to modify the sequence: we can either swap two adjacent letters or reverse the entire sequence. What is the least number of these changes we need to make in order to put the letters in alphabetical order? [b]p9.[/b] A square and a rectangle overlap each other such that the area inside the square but outside the rectangle is equal to the area inside the rectangle but outside the square. If the area of the rectangle is $169$, then find the side length of the square. [b]p10.[/b] If $A = 50\sqrt3$, $B = 60\sqrt2$, and $C = 85$, then order $A$, $B$, and $C$ from least to greatest. [b]p11.[/b] How many ways are there to arrange the letters of the word $RACECAR$? (Identical letters are assumed to be indistinguishable.) [b]p12.[/b] A cube and a regular tetrahedron (which has four faces composed of equilateral triangles) have the same surface area. Let $r$ be the ratio of the edge length of the cube to the edge length of the tetrahedron. Find $r^2$. [b]p13.[/b] Given that $x^2 + x + \frac{1}{x} +\frac{1}{x^2} = 10$, find all possible values of $x +\frac{1}{x}$ . [b]p14.[/b] Astronaut Bob has a rope one unit long. He must attach one end to his spacesuit and one end to his stationary spacecraft, which assumes the shape of a box with dimensions $3\times 2\times 2$. If he can attach and re-attach the rope onto any point on the surface of his spacecraft, then what is the total volume of space outside of the spacecraft that Bob can reach? Assume that Bob's size is negligible. [b]p15.[/b] Triangle $ABC$ has $AB = 4$, $BC = 3$, and $AC = 5$. Point $B$ is reflected across $\overline{AC}$ to point $B'$. The lines that contain $AB'$ and $BC$ are then drawn to intersect at point $D$. Find $AD$. [b]p16.[/b] Consider a rectangle $ABCD$ with side lengths $5$ and $12$. If a circle tangent to all sides of $\vartriangle ABD$ and a circle tangent to all sides of $\vartriangle BCD$ are drawn, then how far apart are the centers of the circles? [b]p17.[/b] An increasing geometric sequence $a_0, a_1, a_2,...$ has a positive common ratio. Also, the value of $a_3 + a_2 - a_1 - a_0$ is equal to half the value of $a_4 - a_0$. What is the value of the common ratio? [b]p18.[/b] In triangle $ABC$, $AB = 9$, $BC = 11$, and $AC = 16$. Points $E$ and $F$ are on $\overline{AB}$ and $\overline{BC}$, respectively, such that $BE = BF = 4$. What is the area of triangle $CEF$? [b]p19.[/b] Xavier, Yuna, and Zach are running around a circular track. The three start at one point and run clockwise, each at a constant speed. After $8$ minutes, Zach passes Xavier for the first time. Xavier first passes Yuna for the first time in $12$ minutes. After how many seconds since the three began running did Zach first pass Yuna? [b]p20.[/b] How many unit fractions are there such that their decimal equivalent has a cycle of $6$ repeating integers? Exclude fractions that repeat in cycles of $1$, $2$, or $3$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].