This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

LMT Team Rounds 2010-20, 2014

[b]p1.[/b] Let $A\% B = BA - B - A + 1$. How many digits are in the number $1\%(3\%(3\%7))$ ? [b]p2. [/b]Three circles, of radii $1, 2$, and $3$ are all externally tangent to each other. A fourth circle is drawn which passes through the centers of those three circles. What is the radius of this larger circle? [b]p3.[/b] Express $\frac13$ in base $2$ as a binary number. (Which, similar to how demical numbers have a decimal point, has a “binary point”.) [b]p4. [/b] Isosceles trapezoid $ABCD$ with $AB$ parallel to $CD$ is constructed such that $DB = DC$. If $AD = 20$, $AB = 14$, and $P$ is the point on $AD$ such that $BP + CP$ is minimized, what is $AP/DP$? [b]p5.[/b] Let $f(x) = \frac{5x-6}{x-2}$ . Define an infinite sequence of numbers $a_0, a_1, a_2,....$ such that $a_{i+1} = f(a_i)$ and $a_i$ is always an integer. What are all the possible values for $a_{2014}$ ? [b]p6.[/b] $MATH$ and $TEAM$ are two parallelograms. If the lengths of $MH$ and $AE$ are $13$ and $15$, and distance from $AM$ to $T$ is $12$, find the perimeter of $AMHE$. [b]p7.[/b] How many integers less than $1000$ are there such that $n^n + n$ is divisible by $5$ ? [b]p8.[/b] $10$ coins with probabilities of $1, 1/2, 1/3 ,..., 1/10$ of coming up heads are flipped. What is the probability that an odd number of them come up heads? [b]p9.[/b] An infinite number of coins with probabilities of $1/4, 1/9, 1/16, ...$ of coming up heads are all flipped. What is the probability that exactly $ 1$ of them comes up heads? [b]p10.[/b] Quadrilateral $ABCD$ has side lengths $AB = 10$, $BC = 11$, and $CD = 13$. Circles $O_1$ and $O_2$ are inscribed in triangles $ABD$ and $BDC$. If they are both tangent to $BD$ at the same point $E$, what is the length of $DA$ ? PS. You had better use hide for answers.

2011 Rioplatense Mathematical Olympiad, Level 3, 6

Let $d(n)$ be the sum of positive integers divisors of number $n$ and $\phi(n)$ the quantity of integers in the interval $[0,n]$ such that these integers are coprime with $n$. For instance $d(6)=12$ and $\phi(7)=6$. Determine if the set of the integers $n$ such that, $d(n)\cdot \phi (n)$ is a perfect square, is finite or infinite set.

2013 India National Olympiad, 3

Let $a,b,c,d \in \mathbb{N}$ such that $a \ge b \ge c \ge d $. Show that the equation $x^4 - ax^3 - bx^2 - cx -d = 0$ has no integer solution.

2008 239 Open Mathematical Olympiad, 6

Given a polynomial $P(x,y)$ with real coefficients, suppose that some real function $f:\mathbb R \to \mathbb R$ satisfies $$P(x,y) = f(x+y)-f(x)-f(y)$$for all $x,y\in\mathbb R$. Show that some polynomial $q$ satisfies $$P(x,y) = q(x+y)-q(x)-q(y)$$

2023 Serbia Team Selection Test, P3

Tags: broken , algebra
The positive integers are partitioned into 2 sequences $a_1<a_2<\dots$ and $b_1<b_2<\dots$ such that $b_n=a_n+n$ for every positive integer $n$. Show that $a_n+b_n=a_{b_n}$.

LMT Team Rounds 2010-20, 2011

[b]p1.[/b] Triangle $ABC$ has side lengths $AB = 3^2$ and $BC = 4^2$. Given that $\angle ABC$ is a right angle, determine the length of $AC$. [b]p2.[/b] Suppose $m$ and $n$ are integers such that $m^2+n^2 = 65$. Find the largest possible value of $m-n$. [b]p3.[/b] Six middle school students are sitting in a circle, facing inwards, and doing math problems. There is a stack of nine math problems. A random student picks up the stack and, beginning with himself and proceeding clockwise around the circle, gives one problem to each student in order until the pile is exhausted. Aditya falls asleep and is therefore not the student who picks up the pile, although he still receives problem(s) in turn. If every other student is equally likely to have picked up the stack of problems and Vishwesh is sitting directly to Aditya’s left, what is the probability that Vishwesh receives exactly two problems? [b]p4.[/b] Paul bakes a pizza in $15$ minutes if he places it $2$ feet from the fire. The time the pizza takes to bake is directly proportional to the distance it is from the fire and the rate at which the pizza bakes is constant whenever the distance isn’t changed. Paul puts a pizza $2$ feet from the fire at $10:30$. Later, he makes another pizza, puts it $2$ feet away from the fire, and moves the first pizza to a distance of $3$ feet away from the fire instantly. If both pizzas finish baking at the same time, at what time are they both done? [b]p5.[/b] You have $n$ coins that are each worth a distinct, positive integer amount of cents. To hitch a ride with Charon, you must pay some unspecified integer amount between $10$ and $20$ cents inclusive, and Charon wants exact change paid with exactly two coins. What is the least possible value of $n$ such that you can be certain of appeasing Charon? [b]p6.[/b] Let $a, b$, and $c$ be positive integers such that $gcd(a, b)$, $gcd(b, c)$ and $gcd(c, a)$ are all greater than $1$, but $gcd(a, b, c) = 1$. Find the minimum possible value of $a + b + c$. [b]p7.[/b] Let $ABC$ be a triangle inscribed in a circle with $AB = 7$, $AC = 9$, and $BC = 8$. Suppose $D$ is the midpoint of minor arc $BC$ and that $X$ is the intersection of $\overline{AD}$ and $\overline{BC}$. Find the length of $\overline{BX}$. [b]p8.[/b] What are the last two digits of the simplified value of $1! + 3! + 5! + · · · + 2009! + 2011!$ ? [b]p9.[/b] How many terms are in the simplified expansion of $(L + M + T)^{10}$ ? [b]p10.[/b] Ben draws a circle of radius five at the origin, and draws a circle with radius $5$ centered at $(15, 0)$. What are all possible slopes for a line tangent to both of the circles? PS. You had better use hide for answers.

2023 Kyiv City MO Round 1, Problem 2

Tags: algebra
Positive integers $k$ and $n$ are given such that $3 \le k \le n$.Prove that among any $n$ pairwise distinct real numbers one can choose either $k$ numbers with positive sum, or $k-1$ numbers with negative sum. [i]Proposed by Mykhailo Shtandenko[/i]

PEN P Problems, 15

Find all integers $m>1$ such that $m^3$ is a sum of $m$ squares of consecutive integers.

2023 LMT Spring, Tie

Tags: algebra
Estimate the value of $$\sum^{2023}_{n=1} \left(1+ \frac{1}{n} \right)^n$$ to $3$ decimal places.

2012 Germany Team Selection Test, 3

Determine all pairs $(f,g)$ of functions from the set of real numbers to itself that satisfy \[g(f(x+y)) = f(x) + (2x + y)g(y)\] for all real numbers $x$ and $y$. [i]Proposed by Japan[/i]

2018 Iran MO (1st Round), 16

Tags: set , algebra
A subset of the real numbers has the property that for any two distinct elements of it such as $x$ and $y$, we have $(x+y-1)^2 = xy+1$. What is the maximum number of elements in this set? $\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ \text{Infinity}$

2001 Tuymaada Olympiad, 3

Do there exist quadratic trinomials $P, \ \ Q, \ \ R$ such that for every integers $x$ and $y$ an integer $z$ exists satisfying $P(x)+Q(y)=R(z)?$ [i]Proposed by A. Golovanov[/i]

ABMC Accuracy Rounds, 2022

[b]p1.[/b] Let $X = 2022 + 022 + 22 + 2$. When $X$ is divided by $22$, there is a remainder of $R$. What is the value of $R$? [b]p2.[/b] When Amy makes paper airplanes, her airplanes fly $75\%$ of the time. If her airplane flies, there is a $\frac56$ chance that it won’t fly straight. Given that she makes $80$ airplanes, what is the expected number airplanes that will fly straight? [b]p3.[/b] It takes Joshua working alone $24$ minutes to build a birdhouse, and his son working alone takes $16$ minutes to build one. The effective rate at which they work together is the sum of their individual working rates. How long in seconds will it take them to make one birdhouse together? [b]p4.[/b] If Katherine’s school is located exactly $5$ miles southwest of her house, and her soccer tournament is located exactly $12$ miles northwest of her house, how long, in hours, will it take Katherine to bike to her tournament right after school given she bikes at $0.5$ miles per hour? Assume she takes the shortest path possible. [b]p5.[/b] What is the largest possible integer value of $n$ such that $\frac{4n+2022}{n+1}$ is an integer? [b]p6.[/b] A caterpillar wants to go from the park situated at $(8, 5)$ back home, located at $(4, 10)$. He wants to avoid routes through $(6, 7)$ and $(7, 10)$. How many possible routes are there if the caterpillar can move in the north and west directions, one unit at a time? [b]p7.[/b] Let $\vartriangle ABC$ be a triangle with $AB = 2\sqrt{13}$, $BC = 6\sqrt2$. Construct square $BCDE$ such that $\vartriangle ABC$ is not contained in square $BCDE$. Given that $ACDB$ is a trapezoid with parallel bases $\overline{AC}$, $\overline{BD}$, find $AC$. [b]p8.[/b] How many integers $a$ with $1 \le a \le 1000$ satisfy $2^a \equiv 1$ (mod $25$) and $3^a \equiv 1$ (mod $29$)? [b]p9.[/b] Let $\vartriangle ABC$ be a right triangle with right angle at $B$ and $AB < BC$. Construct rectangle $ADEC$ such that $\overline{AC}$,$\overline{DE}$ are opposite sides of the rectangle, and $B$ lies on $\overline{DE}$. Let $\overline{DC}$ intersect $\overline{AB}$ at $M$ and let $\overline{AE}$ intersect $\overline{BC}$ at $N$. Given $CN = 6$, $BN = 4$, find the $m+n$ if $MN^2$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$. [b]p10.[/b] An elimination-style rock-paper-scissors tournament occurs with $16$ players. The $16$ players are all ranked from $1$ to $16$ based on their rock-paper-scissor abilities where $1$ is the best and $16$ is the worst. When a higher ranked player and a lower ranked player play a round, the higher ranked player always beats the lower ranked player and moves on to the next round of the tournament. If the initial order of players are arranged randomly, and the expected value of the rank of the $2$nd place player of the tournament can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$ what is the value of $m+n$? [b]p11.[/b] Estimation (Tiebreaker) Estimate the number of twin primes (pairs of primes that differ by $2$) where both primes in the pair are less than $220022$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2013 Moldova Team Selection Test, 4

Tags: logarithm , limit , algebra
Consider a positive real number $a$ and a positive integer $m$. The sequence $(x_k)_{k\in \mathbb{Z}^{+}}$ is defined as: $x_1=1$, $x_2=a$, $x_{n+2}=\sqrt[m+1]{x_{n+1}^mx_n}$. $a)$ Prove that the sequence is converging. $b)$ Find $\lim_{n\rightarrow \infty}{x_n}$.

1985 IMO Shortlist, 6

Let $x_n = \sqrt[2]{2+\sqrt[3]{3+\cdots+\sqrt[n]{n}}}.$ Prove that \[x_{n+1}-x_n <\frac{1}{n!} \quad n=2,3,\cdots\]

2023 CUBRMC, 5

Tags: algebra
The quadratic polynomial $f(x)$ has the expansion $2x^2 - 3x + r$. What is the largest real value of $r$ for which the ranges of the functions $f(x)$ and $f(f(x))$ are the same set?

2012 Benelux, 2

Find all quadruples $(a,b,c,d)$ of positive real numbers such that $abcd=1,a^{2012}+2012b=2012c+d^{2012}$ and $2012a+b^{2012}=c^{2012}+2012d$.

1959 AMC 12/AHSME, 12

By adding the same constant to $20,50,100$ a geometric progression results. The common ratio is: $ \textbf{(A)}\ \frac53 \qquad\textbf{(B)}\ \frac43\qquad\textbf{(C)}\ \frac32\qquad\textbf{(D)}\ \frac12\qquad\textbf{(E)}\ \frac13 $

2023 BMT, Tie 3

Tags: algebra
Compute the real solution for$ x$ to the equation $$(4^x + 8)^4 - (8^x - 4)^4 = (4 + 8^x + 4^x)^4.$$

1992 Chile National Olympiad, 6

A Mathlon is a competition where there are $M$ athletic events. $A, B$ and $C$ were the only participants of a Mathlon. In each event, $p_1$ points were given to the first place, $p_2$ points to the second place and $p_3$ points to third place, with $p_1> p_2> p_3> 0$ where $p_1$, $p_2$ and $p_3$ are integer numbers. The final result was $22$ points for $A$, $9$ for $B$, and $9$ for $C$. $B$ won the $100$ meter dash. Determine $M$ and who was the second in high jump.

2016 Singapore Senior Math Olympiad, 3

For any integer $n \ge 1$, show that $$\sum_{k=1}^{n} \frac{2^k}{\sqrt{k+0.5}} \le 2^{n+1}\sqrt{n+1}-\frac{4n^{3/2}}{3}$$

2014 Hanoi Open Mathematics Competitions, 1

Let $a$ and $b$ satisfy the conditions $\begin{cases} a^3 - 6a^2 + 15a = 9 \\ b^3 - 3b^2 + 6b = -1 \end{cases}$ . The value of $(a - b)^{2014}$ is: (A): $1$, (B): $2$, (C): $3$, (D): $4$, (E) None of the above.

2005 China Northern MO, 2

Let $f$ be a function from R to R. Suppose we have: (1) $f(0)=0$ (2) For all $x, y \in (-\infty, -1) \cup (1, \infty)$, we have $f(\frac{1}{x})+f(\frac{1}{y})=f(\frac{x+y}{1+xy})$. (3) If $x \in (-1,0)$, then $f(x) > 0$. Prove: $\sum_{n=1}^{+\infty} f(\frac{1}{n^2+7n+11}) > f(\frac12)$ with $n \in N^+$.

2019 Harvard-MIT Mathematics Tournament, 4

Tags: algebra , function , hmmt
Let $\mathbb{N}$ be the set of positive integers, and let $f: \mathbb{N} \to \mathbb{N}$ be a function satisfying [list] [*] $f(1) = 1$, [*] for $n \in \mathbb{N}$, $f(2n) = 2f(n)$ and $f(2n+1) = 2f(n) - 1$. [/list] Determine the sum of all positive integer solutions to $f(x) = 19$ that do not exceed 2019.

2012 India IMO Training Camp, 3

Let $\mathbb{R}^{+}$ denote the set of all positive real numbers. Find all functions $f:\mathbb{R}^{+}\longrightarrow \mathbb{R}$ satisfying \[f(x)+f(y)\le \frac{f(x+y)}{2}, \frac{f(x)}{x}+\frac{f(y)}{y}\ge \frac{f(x+y)}{x+y},\] for all $x, y\in \mathbb{R}^{+}$.