This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2007 Moldova National Olympiad, 12.5

Find all polynomials $P\in \mathbb C[X]$ such that \[P(X^{2})=P(X)^{2}+2P(X)\]

1985 All Soviet Union Mathematical Olympiad, 403

Find all the pairs $(x,y)$ such that $|\sin x-\sin y| + \sin x \sin y \le 0$.

1977 Polish MO Finals, 3

Consider the polynomial $W(x) = (x - a)^kQ(x)$, where $a \neq 0$, $Q$ is a nonzero polynomial, and $k$ a natural number. Prove that $W$ has at least $k + 1$ nonzero coefficients.

2023 Princeton University Math Competition, A8

Tags: algebra
Given a positive integer $m,$ define the polynomial $$P_m(z) = z^4-\frac{2m^2}{m^2+1} z^3+\frac{3m^2-2}{m^2+1}z^2-\frac{2m^2}{m^2+1}z+1.$$ Let $S$ be the set of roots of the polynomial $P_5(z)\cdot P_7(z)\cdot P_8(z) \cdot P_{18}(z).$ Let $w$ be the point in the complex plane which minimizes $\sum_{z \in S} |z-w|.$ The value of $\sum_{z \in S} |z-w|^2$ equals $\tfrac{a}{b}$ for relatively prime positive integers $a$ and $b.$ Compute $a+b.$

2007 Bulgaria National Olympiad, 3

Let $P(x)\in \mathbb{Z}[x]$ be a monic polynomial with even degree. Prove that, if for infinitely many integers $x$, the number $P(x)$ is a square of a positive integer, then there exists a polynomial $Q(x)\in\mathbb{Z}[x]$ such that $P(x)=Q(x)^2$.

2010 Saint Petersburg Mathematical Olympiad, 3

$a$ is irrational , but $a$ and $a^3-6a$ are roots of square polynomial with integer coefficients.Find $a$

2009 Princeton University Math Competition, 1

If $\phi$ is the Golden Ratio, we know that $\frac1\phi = \phi - 1$. Define a new positive real number, called $\phi_d$, where $\frac1{\phi_d} = \phi_d - d$ (so $\phi = \phi_1$). Given that $\phi_{2009} = \frac{a + \sqrt{b}}{c}$, $a, b, c$ positive integers, and the greatest common divisor of $a$ and $c$ is 1, find $a + b + c$.

2016 Junior Balkan Team Selection Tests - Romania, 2

a,b,c>0 and $abc\ge 1$.Prove that: $\dfrac{1}{a^3+2b^3+6}+\dfrac{1}{b^3+2c^3+6}+\dfrac{1}{c^3+2a^3+6} \le \dfrac{1}{3}$

STEMS 2024 Math Cat A, P5

Tags: algebra
Let $r$, $s$ be real numbers, find maximum $t$ so that if $a_1, a_2, \ldots$ is a sequence of positive real numbers satisfying \[ a_1^r + a_2^r + \cdots + a_n^r \le 2023 \cdot n^t \] for all $n \ge 2023$ then the sum \[ b_n = \frac 1{a_1^s} + \cdots + \frac 1{a_n^s} \] is unbounded, i.e for all positive reals $M$ there is an $n$ such that $b_n > M$.

2014 India IMO Training Camp, 1

Prove that in any set of $2000$ distinct real numbers there exist two pairs $a>b$ and $c>d$ with $a \neq c$ or $b \neq d $, such that \[ \left| \frac{a-b}{c-d} - 1 \right|< \frac{1}{100000}. \]

2008 Hong Kong TST, 1

Tags: algebra
Let $ f: Z \to Z$ be such that $ f(1) \equal{} 1, f(2) \equal{} 20, f(\minus{}4) \equal{} \minus{}4$ and $ f(x\plus{}y) \equal{} f(x) \plus{}f(y)\plus{}axy(x\plus{}y)\plus{}bxy\plus{}c(x\plus{}y)\plus{}4 \forall x,y \in Z$, where $ a,b,c$ are constants. (a) Find a formula for $ f(x)$, where $ x$ is any integer. (b) If $ f(x) \geq mx^2\plus{}(5m\plus{}1)x\plus{}4m$ for all non-negative integers $ x$, find the greatest possible value of $ m$.

1996 Czech And Slovak Olympiad IIIA, 5

For which integers $k$ does there exist a function $f : N \to Z$ such that $f(1995) =1996$ and $f(xy) = f(x)+ f(y)+k f(gcd(x,y))$ for all $x,y \in N$?

2017 Macedonia National Olympiad, Problem 5

Tags: algebra , function
Let $n>1 \in \mathbb{N}$ and $a_1, a_2, ..., a_n$ be a sequence of $n$ natural integers. Let: $$b_1 = \left[\frac{a_2 + \cdots + a_n}{n-1}\right], b_i = \left[\frac{a_1 + \cdots + a_{i-1} + a_{i+1} + \cdots + a_n}{n-1}\right], b_n = \left[\frac{a_1 + \cdots + a_{n-1}}{n-1}\right]$$ Define a mapping $f$ by $f(a_1,a_2, \cdots a_n) = (b_1,b_2,\cdots,b_n)$. a) Let $g: \mathbb{N} \to \mathbb{N}$ be a function such that $g(1)$ is the number of different elements in $f(a_1,a_2, \cdots a_n)$ and $g(m)$ is the number od different elements in $f^m(a_1,a_2, \cdots a_n) = f(f^{m-1}(a_1,a_2, \cdots a_n)); m>1$. Prove that $\exists k_0 \in \mathbb{N}$ s.t. for $m \ge k_0$ the function $g(m)$ is periodic. b) Prove that $\sum_{m=1}^k \frac{g(m)}{m(m+1)} < C$ for all $k \in \mathbb{N}$, where $C$ is a function that doesn't depend on $k$.

2020 HMNT (HMMO), 10

Tags: algebra
Let $x$ and $y$ be non-negative real numbers that sum to $ 1$. Compute the number of ordered pairs $(a, b)$ with $a, b \in \{0, 1, 2, 3, 4\}$ such that the expression $x^ay^b + y^ax^b$ has maximum value $2^{1-a-b}$ .

2023 Simon Marais Mathematical Competition, A2

Tags: algebra , function
Let $n$ be a positive integer and let $f_1(x), f_2(x) \dots f_n(x)$ be affine functions from $\mathbb{R}$ to $\mathbb{R}$ such that, amongst the graph of these functions, no two are parallel and no three are concurrent. Let $S$ be the set of all convex functions $g(x)$ from $\mathbb{R}$ to $\mathbb{R}$ such that for each $x \in \mathbb{R}$, there exists $i$ such that $g(x) = f_i(x)$. Determine the largest and smallest possible values of $|S|$ in terms of $n$. (A function $f(x)$ is affine if it is of form $f(x) = ax + b$ for some $a, b \in \mathbb{R}$. A function $g(x)$ is convex if $g(\lambda x + (1 - \lambda) y) \leq \lambda g(x) + (1-\lambda)g(y)$ for all $x, y \in \mathbb{R}$ and $0 \leq \lambda \leq 1$)

2009 Polish MO Finals, 3

Let $P,Q,R$ be polynomials of degree at least $1$ with integer coefficients such that for any real number $x$ holds: $P(Q(x))\equal{}Q(R(x))\equal{}R(P(x))$. Show that the polynomials $P,Q,R$ are equal.

1995 Swedish Mathematical Competition, 4

The product of three positive numbers is $1$ and their sum is greater than the sum of their inverses. Prove that one of these numbers is greater than $1$, while the other two are smaller than $1$.

2009 Princeton University Math Competition, 1

Find the root that the following three polynomials have in common: \begin{align*} & x^3+41x^2-49x-2009 \\ & x^3 + 5x^2-49x-245 \\ & x^3 + 39x^2 - 117x - 1435\end{align*}

1988 IMO Longlists, 41

Tags: algebra
[b]i.)[/b] Calculate $x$ if \[ x = \frac{(11 + 6 \cdot \sqrt{2}) \cdot \sqrt{11 - 6 \cdot \sqrt{2}} - (11 - 6 \cdot \sqrt{2}) \cdot \sqrt{11 + 6 \cdot \sqrt{2}}}{(\sqrt{\sqrt{5} + 2} + \sqrt{\sqrt{5} - 2}) - (\sqrt{\sqrt{5}+1})} \] [b]ii.)[/b] For each positive number $x,$ let \[ k = \frac{\left( x + \frac{1}{x} \right)^6 - \left( x^6 + \frac{1}{x^6} \right) - 2}{\left( x + \frac{1}{x} \right)^3 - \left( x^3 + \frac{1}{x^3} \right)} \] Calculate the minimum value of $k.$

2001 Czech And Slovak Olympiad IIIA, 6

Let be given natural numbers $a_1,a_2,...,a_n$ and a function $f : Z \to R$ such that $f(x) = 1$ for all integers $x < 0$ and $f(x) = 1- f(x-a_1)f(x-a_2)... f(x-a_n)$ for all integers $x \ge 0$. Prove that there exist natural numbers $s$ and $t$ such that for all integers $x > s$ it holds that $f(x+t) = f(x)$.

2006 Princeton University Math Competition, 9

Tags: algebra
Consider the set of sequences $\{S_i\}$ that start with $S_0 = 12$, $S_1 = 21$, $S_2 = 28$, and for $n > 2$, $S_n$ is the sum of two (not necessarily distinct) $S_{k_n}$ and $S_{j_n}$ with $k_n, j_n < n$. Find the largest integer that cannot be found in any sequence $S_i$.

2006 Princeton University Math Competition, 3

Tags: algebra
Find the minimum value of $x^2+2x+ \frac{24}{x}$ for $x > 0$.

2023 Saint Petersburg Mathematical Olympiad, 5

Tags: algebra
Let $x_0, x_1, \ldots, x_{n-1}, x_n=x_0$ be reals and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. The numbers $y_i$ for $i=0,1, \ldots, n-1$ are chosen such that $y_i$ is between $x_i$ and $x_{i+1}$. Prove that $\sum_{i=0}^{n-1}(x_{i+1}-x_i)f(y_i)$ can attain both positive and negative values, by varying the $y_i$.

2004 IMO Shortlist, 7

Let ${a_1,a_2,\dots,a_n}$ be positive real numbers, ${n>1}$. Denote by $g_n$ their geometric mean, and by $A_1,A_2,\dots,A_n$ the sequence of arithmetic means defined by \[ A_k=\frac{a_1+a_2+\cdots+a_k}{k},\qquad k=1,2,\dots,n. \] Let $G_n$ be the geometric mean of $A_1,A_2,\dots,A_n$. Prove the inequality \[ n \root n\of{\frac{G_n}{A_n}}+ \frac{g_n}{G_n}\le n+1 \] and establish the cases of equality. [i]Proposed by Finbarr Holland, Ireland[/i]

1974 All Soviet Union Mathematical Olympiad, 203

Given a function $f(x)$ on the segment $0\le x\le 1$. For all $x, f(x)\ge 0, f(1)=1$. For all the couples of $(x_1,x_2)$ such, that all the arguments are in the segment $$f(x_1+x_2)\ge f(x_1)+f(x_2).$$ a) Prove that for all $x$ holds $f(x) \le 2x$. b) Is the inequality $f(x) \le 1.9x$ valid?