This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2023 JBMO Shortlist, A5

Let $a \geq b \geq 1 \geq c \geq 0$ be real numbers such that $a+b+c=3$. Show that $$3 \left( \frac{a}{b}+\frac{b}{a} \right ) \geq 4c^2+\frac{a^2}{b}+\frac{b^2}{a}$$

2010 Putnam, B6

Let $A$ be an $n\times n$ matrix of real numbers for some $n\ge 1.$ For each positive integer $k,$ let $A^{[k]}$ be the matrix obtained by raising each entry to the $k$th power. Show that if $A^k=A^{[k]}$ for $k=1,2,\cdots,n+1,$ then $A^k=A^{[k]}$ for all $k\ge 1.$

2017 Taiwan TST Round 1, 1

Find all polynomials $P$ with real coefficients which satisfy \[P(x)P(x+1)=P(x^2-x+3) \quad \forall x \in \mathbb{R}\]

2020 MMATHS, 5

Tags: algebra , minimum
Let $x, y$ be positive reals such that $x \ne y$. Find the minimum possible value of $(x + y)^2 + \frac{54}{xy(x-y)^2}$ .

2003 Canada National Olympiad, 3

Tags: algebra
Find all real positive solutions (if any) to \begin{align*} x^3+y^3+z^3 &= x+y+z, \mbox{ and} \\ x^2+y^2+z^2 &= xyz. \end{align*}

2024 European Mathematical Cup, 4

Find all functions $ f: \mathbb{R}^{+} \to \mathbb{R}^{+}$ such that $f(x+yf(x)) = xf(1+y)$ for all x, y positive reals.

2025 Kyiv City MO Round 1, Problem 4

Tags: algebra
Oleksii wrote some \( 2n \) (\( n > 1 \)) consecutive positive integers on the board. After that, he grouped these numbers into pairs in some way, and within each pair, he multiplied the two numbers together. He then wrote the resulting \( n \) products on the board instead of the original numbers. Afterward, Anton wrote down the difference between the largest and the smallest of the numbers Oleksii wrote. Oleksii wants Anton to write the smallest possible number. What is the smallest number that can be written? [i]Proposed by Oleksii Masalitin, Anton Trygub[/i]

1994 Korea National Olympiad, Problem 1

Tags: algebra , function
Let $ S$ be the set of nonnegative integers. Find all functions $ f,g,h: S\rightarrow S$ such that $ f(m\plus{}n)\equal{}g(m)\plus{}h(n),$ for all $ m,n\in S$, and $ g(1)\equal{}h(1)\equal{}1$.

2021 MOAA, 4

Let $a$, $b$, and $c$ be real numbers such that $0\le a,b,c\le 5$ and $2a + b + c = 10$. Over all possible values of $a$, $b$, and $c$, determine the maximum possible value of $a + 2b + 3c$. [i]Proposed by Andrew Wen[/i]

2019 Brazil Undergrad MO, 3

Let $a,b,c$ be constants and $a,b,c$ are positive real numbers. Prove that the equations $2x+y+z=\sqrt{c^2+z^2}+\sqrt{c^2+y^2}$ $x+2y+z=\sqrt{b^2+x^2}+\sqrt{b^2+z^2}$ $x+y+2z=\sqrt{a^2+x^2}+\sqrt{a^2+y^2}$ have exactly one real solution $(x,y,z)$ with $x,y,z \geq 0$.

1993 AIME Problems, 5

Let $P_0(x) = x^3 + 313x^2 - 77x - 8$. For integers $n \ge 1$, define $P_n(x) = P_{n - 1}(x - n)$. What is the coefficient of $x$ in $P_{20}(x)$?

2012 Cuba MO, 1

If $$\frac{x_1}{x_1+1} = \frac{x_2}{x_2+3} = \frac{x_3}{x_3+5} = ...= \frac{x_{1006}}{x_{1006}+2011}$$ and $x_1+x_2+...+x_{1006} = 503^2$, determine the value of $x_{1006}$.

1981 Romania Team Selection Tests, 2.

Tags: algebra
Show that a set $A$ consisting of $16$ consecutive non-negative integers can be partitioned in two disjoint sets $X$ and $Y$ each containing $8$ elements so that \(\sum\limits_{x\in X}x^k=\sum\limits_{y\in Y} y^k,\) for $k=1,2,3.$

2022 Benelux, 1

Let $n\geqslant 0$ be an integer, and let $a_0,a_1,\dots,a_n$ be real numbers. Show that there exists $k\in\{0,1,\dots,n\}$ such that $$a_0+a_1x+a_2x^2+\cdots+a_nx^n\leqslant a_0+a_1+\cdots+a_k$$ for all real numbers $x\in[0,1]$.

2008 Mathcenter Contest, 4

Let $a,b$ and $c$ be positive integers that $$\frac{a\sqrt{3}+b}{b\sqrt3+c}$$ is a rational number, show that $$\frac{a^2+b^2+c^2}{a+b+ c}$$ is an integer. [i](Anonymous314)[/i]

1947 Moscow Mathematical Olympiad, 131

Tags: product , algebra
Calculate (without calculators, tables, etc.) with accuracy to $0.00001$ the product $\left(1-\frac{1}{10}\right)\left(1-\frac{1}{10^2}\right)...\left(1-\frac{1}{10^{99}}\right)$

1991 India Regional Mathematical Olympiad, 6

Find all integer values of $a$ such that the quadratic expression $(x+a)(x+1991) +1$ can be factored as a product $(x+b)(x+c)$ where $b,c$ are integers.

2023 Kazakhstan National Olympiad, 4

Given $x,y>0$ such that $x^2y^2+2x^3y=1$. Find the minimum value of sum $x+y$

2020 Dutch IMO TST, 3

Find all functions $f: Z \to Z$ that satisfy $$f(-f (x) - f (y))= 1 -x - y$$ for all $x, y \in Z$

2016 Iran MO (3rd Round), 1

Let $F$ be a subset of the set of positive integers with at least two elements and $P(x)$ be a polynomial with integer coefficients such that for any two distinct elements of $F$ like $a$ and $b$, the following two conditions hold [list] [*] $a+b \in F$, and [*] $\gcd(P(a),P(b))=1$. [/list] Prove that $P(x)$ is a constant polynomial.

2016 Dutch BxMO TST, 2

Determine all triples (x, y, z) of non-negative real numbers that satisfy the following system of equations $\begin{cases} x^2 - y = (z - 1)^2\\ y^2 - z = (x - 1)^2 \\ z^2 - x = (y -1)^2 \end{cases}$.

2008 Romania National Olympiad, 4

Let $ A\equal{}(a_{ij})_{1\leq i,j\leq n}$ be a real $ n\times n$ matrix, such that $ a_{ij} \plus{} a_{ji} \equal{} 0$, for all $ i,j$. Prove that for all non-negative real numbers $ x,y$ we have \[ \det(A\plus{}xI_n)\cdot \det(A\plus{}yI_n) \geq \det (A\plus{}\sqrt{xy}I_n)^2.\]

2009 Romanian Masters In Mathematics, 1

For $ a_i \in \mathbb{Z}^ \plus{}$, $ i \equal{} 1, \ldots, k$, and $ n \equal{} \sum^k_{i \equal{} 1} a_i$, let $ d \equal{} \gcd(a_1, \ldots, a_k)$ denote the greatest common divisor of $ a_1, \ldots, a_k$. Prove that $ \frac {d} {n} \cdot \frac {n!}{\prod\limits^k_{i \equal{} 1} (a_i!)}$ is an integer. [i]Dan Schwarz, Romania[/i]

2012 Abels Math Contest (Norwegian MO) Final, 1a

Berit has $11$ twenty kroner coins, $14$ ten kroner coins, and $12$ five kroner coins. An exchange machine can exchange three ten kroner coins into one twenty kroner coin and two five kroner coins, and the reverse. It can also exchange two twenty kroner coins into three ten kroner coins and two five kroner coins, and the reverse. (i) Can Berit get the same number of twenty kroner and ten kroner coins, but no five kroner coins? (ii) Can she get the same number each of twenty kroner, ten kroner, and five kroner coins?

2017 QEDMO 15th, 7

Find all real solutions $x, y$ of the system of equations $$\begin{cases} x + \dfrac{3x-y}{x^2 + y^2} = 3 \\ \\ y-\dfrac{x + 3y}{x^2 + y^2} = 0 \end{cases}$$