Found problems: 15925
1992 Vietnam National Olympiad, 1
Let $ 9 < n_{1} < n_{2} < \ldots < n_{s} < 1992$ be positive integers and \[ P(x) \equal{} 1 \plus{} x^{2} \plus{} x^{9} \plus{} x^{n_{1}} \plus{} \cdots \plus{} x^{n_{s}} \plus{} x^{1992}.\] Prove that if $ x_{0}$ is real root of $ P(x)$ then $ x_{0}\leq\frac {1 \minus{} \sqrt {5}}{2}$.
2012 Pan African, 3
Find all real solutions $x$ to the equation $\lfloor x^2 - 2x \rfloor + 2\lfloor x \rfloor = \lfloor x \rfloor^2$.
MBMT Guts Rounds, 2016
[u]Set 1[/u]
[b]p1.[/b] Arnold is currently stationed at $(0, 0)$. He wants to buy some milk at $(3, 0)$, and also some cookies at $(0, 4)$, and then return back home at $(0, 0)$. If Arnold is very lazy and wants to minimize his walking, what is the length of the shortest path he can take?
[b]p2.[/b] Dilhan selects $1$ shirt out of $3$ choices, $1$ pair of pants out of $4$ choices, and $2$ socks out of $6$ differently-colored socks. How many outfits can Dilhan select? All socks can be worn on both feet, and outfits where the only difference is that the left sock and right sock are switched are considered the same.
[b]p3.[/b] What is the sum of the first $100$ odd positive integers?
[b]p4.[/b] Find the sum of all the distinct prime factors of $1591$.
[b]p5.[/b] Let set $S = \{1, 2, 3, 4, 5, 6\}$. From $S$, four numbers are selected, with replacement. These numbers are assembled to create a $4$-digit number. How many such $4$-digit numbers are multiples of $3$?
[u]Set 2[/u]
[b]p6.[/b] What is the area of a triangle with vertices at $(0, 0)$, $(7, 2)$, and $(4, 4)$?
[b]p7.[/b] Call a number $n$ “warm” if $n - 1$, $n$, and $n + 1$ are all composite. Call a number $m$ “fuzzy” if $m$ may be expressed as the sum of $3$ consecutive positive integers. How many numbers less than or equal to $30$ are warm and fuzzy?
[b]p8.[/b] Consider a square and hexagon of equal area. What is the square of the ratio of the side length of the hexagon to the side length of the square?
[b]p9.[/b] If $x^2 + y^2 = 361$, $xy = -40$, and $x - y$ is positive, what is $x - y$?
[b]p10.[/b] Each face of a cube is to be painted red, orange, yellow, green, blue, or violet, and each color must be used exactly once. Assuming rotations are indistinguishable, how many ways are there to paint the cube?
[u]Set 3[/u]
[b]p11.[/b] Let $D$ be the midpoint of side $BC$ of triangle $ABC$. Let $P$ be any point on segment $AD$. If $M$ is the maximum possible value of $\frac{[PAB]}{[PAC]}$ and $m$ is the minimum possible value, what is $M - m$?
Note: $[PQR]$ denotes the area of triangle $PQR$.
[b]p12.[/b] If the product of the positive divisors of the positive integer $n$ is $n^6$, find the sum of the $3$ smallest possible values of $n$.
[b]p13.[/b] Find the product of the magnitudes of the complex roots of the equation $(x - 4)^4 +(x - 2)^4 + 14 = 0$.
[b]p14.[/b] If $xy - 20x - 16y = 2016$ and $x$ and $y$ are both positive integers, what is the least possible value of $\max (x, y)$?
[b]p15.[/b] A peasant is trying to escape from Chyornarus, ruled by the Tsar and his mystical faith healer. The peasant starts at $(0, 0)$ on a $6 \times 6$ unit grid, the Tsar’s palace is at $(3, 3)$, the healer is at $(2, 1)$, and the escape is at $(6, 6)$. If the peasant crosses the Tsar’s palace or the mystical faith healer, he is executed and fails to escape. The peasant’s path can only consist of moves upward and rightward along the gridlines. How many valid paths allow the peasant to escape?
PS. You should use hide for answers. Rest sets have been posted [url=https://artofproblemsolving.com/community/c3h2784259p24464954]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
LMT Speed Rounds, 2013
[b]p1.[/b] What is the smallest positive integer divisible by $20$, $12$, and $13$?
[b]p2.[/b] Two circles of radius $5$ are placed in the plane such that their centers are $7$ units apart. What is the largest possible distance between a point on one circle and a point on the other?
[b]p3.[/b] In a magic square, all the numbers in the rows, columns, and diagonals sum to the same value. How many $2\times 2$ magic squares containing the integers $\{1, 2, 3, 4\}$ are there?
[b]p4.[/b] Ethan's sock drawer contains two pairs of white socks and one pair of red socks. Ethan picks two socks at random. What is the probability that he picks two white socks?
[b]p5.[/b] The sum of the time on a digital clock is the sum of the digits displayed on the screen. For example, the sum of the time at $10:23$ would be $6$. Assuming the clock is a $12$ hour clock, what is the greatest possible positive difference between the sum of the time at some time and the sum of the time one minute later?
[b]p6.[/b] Given the expression $1 \div 2 \div 3 \div 4$, what is the largest possible resulting value if one were to place parentheses $()$ somewhere in the expression?
[b]p7.[/b] At a convention, there are many astronomers, astrophysicists, and cosmologists. At $first$, all the astronomers and astrophysicists arrive. At this point, $\frac35$ of the people in the room are astronomers. Then, all the cosmologists come, so now, $30\%$ of the people in the room are astrophysicists. What fraction of the scientists are cosmologists?
[b]p8.[/b] At $10:00$ AM, a minuteman starts walking down a $1200$-step stationary escalator at $40$ steps per minute. Halfway down, the escalator starts moving up at a constant speed, while the minuteman continues to walk in the same direction and at the same pace that he was going before. At $10:55$ AM, the minuteman arrives back at the top. At what speed is the escalator going up, in steps per minute?
[b]p9.[/b] Given that $x_1 = 57$, $x_2 = 68$, and $x_3 = 32$, let $x_n = x_{n-1} -x_{n-2} +x_{n-3}$ for $n \ge 4$. Find $x_{2013}$.
[b]p10.[/b] Two squares are put side by side such that one vertex of the larger one coincides with a vertex of the smaller one. The smallest rectangle that contains both squares is drawn. If the area of the rectangle is $60$ and the area of the smaller square is $24$, what is the length of the diagonal of the rectangle?
[b]p11.[/b] On a dield trip, $2$ professors, $4$ girls, and $4$ boys are walking to the forest to gather data on butterflies. They must walk in a line with following restrictions: one adult must be the first person in the line and one adult must be the last person in the line, the boys must be in alphabetical order from front to back, and the girls must also be in alphabetical order from front to back. How many such possible lines are there, if each person has a distinct name?
[b]p12.[/b] Flatland is the rectangle with vertices $A, B, C$, and $D$, which are located at $(0, 0)$, $(0, 5)$, $(5, 5)$, and $(5, 0)$, respectively. The citizens put an exact map of Flatland on the rectangular region with vertices $(1, 2)$, $(1, 3)$, $(2, 3)$, and $(2, 2)$ in such a way so that the location of $A$ on the map lies on the point $(1, 2)$ of Flatland, the location of $B$ on the map lies on the point $(1, 3)$ of Flatland, the location of C on the map lies on the point $(2, 3)$ of Flatland, and the location of D on the map lies on the point $(2, 2)$ of Flatland. Which point on the coordinate plane is thesame point on the map as where it actually is on Flatland?
[b]p13.[/b] $S$ is a collection of integers such that any integer $x$ that is present in $S$ is present exactly $x$ times. Given that all the integers from $1$ through $22$ inclusive are present in $S$ and no others are, what is the average value of the elements in $S$?
[b]p14.[/b] In rectangle $PQRS$ with $PQ < QR$, the angle bisector of $\angle SPQ$ intersects $\overline{SQ}$ at point $T$ and $\overline{QR }$ at $U$. If $PT : TU = 3 : 1$, what is the ratio of the area of triangle $PTS$ to the area of rectangle $PQRS$?
[b]p15.[/b] For a function $f(x) = Ax^2 + Bx + C$, $f(A) = f(B)$ and $A + 6 = B$. Find all possible values of $B$.
[b]p16.[/b] Let $\alpha$ be the sum of the integers relatively prime to $98$ and less than $98$ and $\beta$ be the sum of the integers not relatively prime to $98$ and less than $98$. What is the value of $\frac{\alpha}{\beta}$ ?
[b]p17.[/b] What is the value of the series $\frac{1}{3} + \frac{3}{9} + \frac{6}{27} + \frac{10}{81} + \frac{15}{243} + ...$?
[b]p18.[/b] A bug starts at $(0, 0)$ and moves along lattice points restricted to $(i, j)$, where $0 \le i, j \le 2$. Given that the bug moves $1$ unit each second, how many different paths can the bug take such that it ends at $(2, 2)$ after $8$ seconds?
[b]p19.[/b] Let $f(n)$ be the sum of the digits of $n$. How many different values of $n < 2013$ are there such that $f(f(f(n))) \ne f(f(n))$ and $f(f(f(n))) < 10$?
[b]p20.[/b] Let $A$ and $B$ be points such that $\overline{AB} = 14$ and let $\omega_1$ and $\omega_2$ be circles centered at $A$ and $B$ with radii $13$ and $15$, respectively. Let $C$ be a point on $\omega_1$ and $D$ be a point on $\omega_2$ such that $\overline{CD}$ is a common external tangent to $\omega_1$ and $\omega_2$. Let $P$ be the intersection point of the two circles that is closer to $\overline{CD}$. If $M$ is the midpoint of $\overline{CD}$, what is the length of segment $\overline{PM}$?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2013 AIME Problems, 10
There are nonzero integers $a$, $b$, $r$, and $s$ such that the complex number $r+si$ is a zero of the polynomial $P(x) = x^3 - ax^2 + bx - 65$. For each possible combination of $a$ and $b$, let $p_{a,b}$ be the sum of the zeroes of $P(x)$. Find the sum of the $p_{a,b}$'s for all possible combinations of $a$ and $b$.
2020 Caucasus Mathematical Olympiad, 8
Let real $a$, $b$, and $c$ satisfy $$abc+a+b+c=ab+bc+ca+5.$$ Find the least possible value of $a^2+b^2+c^2$.
1996 Argentina National Olympiad, 1
$100$ numbers were written around a circle. The sum of the $100$ numbers is equal to $100$ and the sum of six consecutive numbers is always less than or equal to $6$. The first number is $6$. Find all the numbers.
2017 BMT Spring, 3
Compute $\int^9_{-9}17x^3 \cos (x^2) dx.$
2023 Stanford Mathematics Tournament, R6
[b]p16.[/b] When not writing power rounds, Eric likes to climb trees. The strength in his arms as a function of time is $s(t) = t^3 - 3t^2$. His climbing velocity as a function of the strength in his arms is $v(s) = s^5 + 9s^4 + 19s^3 - 9s^2 - 20s$. At how many (possibly negative) points in time is Eric stationary?
[b]p17[/b]. Consider a triangle $\vartriangle ABC$ with angles $\angle ACB = 60^o$, $\angle ABC = 45^o$. The circumcircle around $\vartriangle ABH$, where $H$ is the orthocenter of $\vartriangle ABC$, intersects $BC$ for a second time in point $P$, and the center of that circumcircle is $O_c$. The line $PH$ intersects $AC$ in point $Q$, and $N$ is center of the circumcircle around $\vartriangle AQP$. Find $\angle NO_cP$.
[b]p18.[/b] If $x, y$ are positive real numbers and $xy^3 = \frac{16}{9}$ , what is the minimum possible value of $3x + y$?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2004 Gheorghe Vranceanu, 2
[b]a)[/b] Let be an even number $ n\ge 4 $ and $ n $ positive real numbers $ x_1,x_2,\ldots ,x_n. $ Prove that:
$$ \min_{1\le i\le n/2} \frac{x_i}{x_{i+n/2}}\le \frac{x_1+x_2+\cdots +x_{n/2}}{x_{1+n/2}+ x_{2+n/2} +\cdots + x_n}\le \max_{1\le i\le n/2} \frac{x_i}{x_{i+n/2}}$$
[b]b)[/b] Let be $ m\ge 1 $ pairwise distinct natural numbers $ a,b,\ldots ,c. $ Show that:
$$ \frac{ab\cdots c}{a+b+\cdots +c}\ge (m-1)!\cdot\frac{2}{m+1} $$
[i]M. Tetiva[/i]
1994 Irish Math Olympiad, 2
Let $ p,q,r$ be distinct real numbers that satisfy: $ q\equal{}p(4\minus{}p), \, r\equal{}q(4\minus{}q), \, p\equal{}r(4\minus{}r).$ Find all possible values of $ p\plus{}q\plus{}r$.
1996 Tuymaada Olympiad, 2
Given a finite set of real numbers $A$, not containing $0$ and $1$ and possessing the property: if the number a belongs to $A$, then numbers $\frac{1}{a}$ and $1-a$ also belong to $A$. How many numbers are in the set $A$?
1997 Abels Math Contest (Norwegian MO), 3a
Each subset of $97$ out of $1997$ given real numbers has positive sum.
Show that the sum of all the $1997$ numbers is positive.
1989 Greece National Olympiad, 1
Let $a,b,c,d x,y,z, w$ be real numbers such that $$\begin{matrix}
ax -by-c z-dw =0\\
b x +a y -d z +cw=0\\
c x+ d y +a z -b w=0\\
dx-c y+bz+aw=0
\end{matrix}$$
prove that $$a=b=c=d=0, \ \ or \ \ x=y=z=w=0$$
PEN Q Problems, 10
Suppose that the integers $a_{1}$, $a_{2}$, $\cdots$, $a_{n}$ are distinct. Show that \[(x-a_{1})(x-a_{2}) \cdots (x-a_{n})-1\] cannot be expressed as the product of two nonconstant polynomials with integer coefficients.
2014 India National Olympiad, 4
Written on a blackboard is the polynomial $x^2+x+2014$. Calvin and Hobbes take turns alternately (starting with Calvin) in the following game. At his turn, Calvin should either increase or decrease the coefficient of $x$ by $1$. And at this turn, Hobbes should either increase or decrease the constant coefficient by $1$. Calvin wins if at any point of time the polynomial on the blackboard at that instant has integer roots. Prove that Calvin has a winning stratergy.
EMCC Guts Rounds, 2018
[u]Round 1[/u]
[b]p1.[/b] How many distinct ways are there to scramble the letters in $EXETER$?
[b]p2.[/b] Given that $\frac{x - y}{x - z}= 3$, find $\frac{x - z}{y - z}$.
[b]p3.[/b] When written in base $10$, $9^9 =\overline{ABC420DEF}.$ Find the remainder when $A + B + C + D + E + F$ is divided by $9$.
[u]Round 2[/u]
[b]p4.[/b] How many positive integers, when expressed in base $7$, have exactly $3$ digits, but don't contain the digit $3$?
[b]p5.[/b] Pentagon $JAMES$ is such that its internal angles satisfy $\angle J = \angle A = \angle M = 90^o$ and $\angle E = \angle S$. If $JA = AM = 4$ and $ME = 2$, what is the area of $JAMES$?
[b]p6.[/b] Let $x$ be a real number such that $x = \frac{1+\sqrt{x}}{2}$ . What is the sum of all possible values of $x$?
[u]Round 3[/u]
[b]p7.[/b] Farmer James sends his favorite chickens, Hen Hao and PEAcock, to compete at the Fermi Estimation All Star Tournament (FEAST). The first problem at the FEAST requires the chickens to estimate the number of boarding students at Eggs-Eater Academy given the number of dorms $D$ and the average number of students per dorm $A$. Hen Hao rounds both $D$ and $A$ down to the nearest multiple of $10$ and multiplies them, getting an estimate of $1200$ students. PEAcock rounds both $D$ and $A$ up to the nearest multiple of $10$ and multiplies them, getting an estimate of $N$ students. What is the maximum possible value of $N$?
[b]p8.[/b] Farmer James has decided to prepare a large bowl of egg drop soup for the Festival of Eggs-Eater Annual Soup Tasting (FEAST). To flavor the soup, Hen Hao drops eggs into it. Hen Hao drops $1$ egg into the soup in the first hour, $2$ eggs into the soup in the second hour, and so on, dropping $k$ eggs into the soup in the $k$th hour. Find the smallest positive integer $n$ so that after exactly n hours, Farmer James finds that the number of eggs dropped in his egg drop soup is a multiple of $200$.
[b]p9.[/b] Farmer James decides to FEAST on Hen Hao. First, he cuts Hen Hao into $2018$ pieces. Then, he eats $1346$ pieces every day, and then splits each of the remaining pieces into three smaller pieces. How many days will it take Farmer James to eat Hen Hao? (If there are fewer than $1346$ pieces remaining, then Farmer James will just eat all of the pieces.)
[u]Round 4[/u]
[b]p10.[/b] Farmer James has three baskets, and each basket has one magical egg. Every minute, each magical egg disappears from its basket, and reappears with probability $\frac12$ in each of the other two baskets. Find the probability that after three minutes, Farmer James has all his eggs in one basket.
[b]p11.[/b] Find the value of $\frac{4 \cdot 7}{\sqrt{4 +\sqrt7} +\sqrt{4 -\sqrt7}}$.
[b]p12.[/b] Two circles, with radius $6$ and radius $8$, are externally tangent to each other. Two more circles, of radius $7$, are placed on either side of this configuration, so that they are both externally tangent to both of the original two circles. Out of these $4$ circles, what is the maximum distance between any two centers?
PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2949222p26406222]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
III Soros Olympiad 1996 - 97 (Russia), 11.3
Find the greatest $a$ for which there is $b$ such that the system $$\begin{cases} y=x^4+a \\ x=\dfrac{1}{y^4}+b \end{cases}$$ has exactly two solutions.
MOAA Team Rounds, 2018.2
If $x > 0$ and $x^2 +\frac{1}{x^2}= 14$, find $x^5 +\frac{1}{x^5}$.
2004 Germany Team Selection Test, 2
Find all functions $f: \Bbb{R}_{0}^{+}\rightarrow \Bbb{R}_{0}^{+}$ with the following properties:
(a) We have $f\left( xf\left( y\right) \right) \cdot f\left( y\right) =f\left( x+y\right)$ for all $x$ and $y$.
(b) We have $f\left(2\right) = 0$.
(c) For every $x$ with $0 < x < 2$, the value $f\left(x\right)$ doesn't equal $0$.
[b]NOTE.[/b] We denote by $\Bbb{R}_{0}^{+}$ the set of all non-negative real numbers.
LMT Team Rounds 2021+, B8
Find the number of arithmetic sequences $a_1,a_2,a_3$ of three nonzero integers such that the sum of the terms in the sequence is equal to the product of the terms in the sequence.
[i]Proposed by Sammy Charney[/i]
2025 Kyiv City MO Round 1, Problem 1
Find all three-digit numbers that are \( 5 \) times greater than the product of their digits.
1980 Putnam, A1
Let $b$ and $c$ be fixed real numbers and let the ten points $(j,y_j )$ for $j=1,2,\ldots,10$ lie on the parabola $y =x^2 +bx+c.$ For $j=1,2,\ldots, 9$ let $I_j$ be the intersection of the tangents to the given parabola at $(j, y_j )$ and $(j+1, y_{j+1}).$ Determine the poynomial function $y=g(x)$ of least degree whose graph passes through all nine points $I_j .$
2017 Thailand TSTST, 2
Let $f, g$ be bijections on $\{1, 2, 3, \dots, 2016\}$. Determine the value of $$\sum_{i=1}^{2016}\sum_{j=1}^{2016}[f(i)-g(j)]^{2559}.$$
2005 District Olympiad, 4
Let $f:\mathbb{Q}\rightarrow \mathbb{Q}$ a monotonic bijective function.
a)Prove that there exist a unique continuous function $F:\mathbb{R}\rightarrow \mathbb{R}$ such that $F(x)=f(x),\ (\forall)x\in \mathbb{Q}$.
b)Give an example of a non-injective polynomial function $G:\mathbb{R}\rightarrow \mathbb{R}$ such that $G(\mathbb{Q})\subset \mathbb{Q}$ and it's restriction defined on $\mathbb{Q}$ is injective.