Found problems: 15925
2008 Indonesia Juniors, day 2
p1. Let $A = \{(x, y)|3x + 5y\ge 15, x + y^2\le 25, x\ge 0, x, y$ integer numbers $\}$. Find all pairs of $(x, zx)\in A$ provided that $z$ is non-zero integer.
p2. A shop owner wants to be able to weigh various kinds of weight objects (in natural numbers) with only $4$ different weights.
(For example, if he has weights $ 1$, $2$, $5$ and $10$. He can weighing $ 1$ kg, $2$ kg, $3$ kg $(1 + 2)$, $44$ kg $(5 - 1)$, $5$ kg, $6$ kg, $7$ kg, $ 8$ kg, $9$ kg $(10 - 1)$, $10$ kg, $11$ kg, $12$ kg, $13$ kg $(10 + 1 + 2)$, $14$ kg $(10 + 5 -1)$, $15$ kg, $16$ kg, $17$ kg and $18$ kg). If he wants to be able to weigh all the weight from $ 1$ kg to $40$ kg, determine the four weights that he must have. Explain that your answer is correct.
p3. Given the following table.
[img]https://cdn.artofproblemsolving.com/attachments/d/8/4622407a72656efe77ccaf02cf353ef1bcfa28.png[/img]
Table $4\times 4$ is a combination of four smaller table sections of size $2\times 2$.
This table will be filled with four consecutive integers such that:
$\bullet$ The horizontal sum of the numbers in each row is $10$ .
$\bullet$ The vertical sum of the numbers in each column is $10$
$\bullet$ The sum of the four numbers in each part of $2\times 2$ which is delimited by the line thickness is also equal to $10$.
Determine how many arrangements are possible.
p4. A sequence of real numbers is defined as following:
$U_n=ar^{n-1}$, if $n = 4m -3$ or $n = 4m - 2$
$U_n=- ar^{n-1}$, if $n = 4m - 1$ or $n = 4m$, where $a > 0$, $r > 0$, and $m$ is a positive integer.
Prove that the sum of all the $ 1$st to $2009$th terms is $\frac{a(1+r-r^{2009}+r^{2010})}{1+r^2}$
5. Cube $ABCD.EFGH$ is cut into four parts by two planes. The first plane is parallel to side $ABCD$ and passes through the midpoint of edge $BF$. The sceond plane passes through the midpoints $AB$, $AD$, $GH$, and $FG$. Determine the ratio of the volumes of the smallest part to the largest part.
2007 Romania Team Selection Test, 2
Let $f: \mathbb{Q}\rightarrow \mathbb{R}$ be a function such that \[|f(x)-f(y)|\leq (x-y)^{2}\] for all $x,y \in\mathbb{Q}$. Prove that $f$ is constant.
1984 USAMO, 5
$P(x)$ is a polynomial of degree $3n$ such that
\begin{eqnarray*}
P(0) = P(3) = \cdots &=& P(3n) = 2, \\
P(1) = P(4) = \cdots &=& P(3n-2) = 1, \\
P(2) = P(5) = \cdots &=& P(3n-1) = 0, \quad\text{ and }\\
&& P(3n+1) = 730.\end{eqnarray*}
Determine $n$.
2022 CHMMC Winter (2022-23), 3
Suppose that $a,b,c$ are complex numbers with $a+b+c = 0$, $|abc| = 1$, $|b| = |c|$, and $$\frac{9-\sqrt{33}}{48}
\le \cos^2 \left( arg \left( \frac{b}{a} \right) \right)\le \frac{9+\sqrt{33}}{48} .$$
Find the maximum possible value of $|-a^6+b^6+c^6|$.
1985 Greece National Olympiad, 4
Consider function $f:\mathbb{R}\to \mathbb{R}$ with $f(x)=\frac{4^x}{4^x+2},$ for any $x\in \mathbb{R}$
a) Prove that $f(x)+f(1-x)=1,$
b) Claculate the sum $$f\left(\frac{1}{1986} \right)+f\left(\frac{2}{1986} \right)+\cdots f\left(\frac{1986}{1986} \right).$$
V Soros Olympiad 1998 - 99 (Russia), 9.1
It is known that each of the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ has two different roots and these four roots form an arithmetic progression in some order. Find $a$ and $b$.
2023 Brazil Undergrad MO, 3
Prove that there exists a constant $C > 0$ such that, for any integers $m, n$ with $n \geq m > 1$ and any real number $x > 1$, $$\sum_{k=m}^{n}\sqrt[k]{x} \leq C\bigg(\frac{m^2 \cdot \sqrt[m-1]{x}}{\log{x}} + n\bigg)$$
2008 Baltic Way, 3
Does there exist an angle $ \alpha\in(0,\pi/2)$ such that $ \sin\alpha$, $ \cos\alpha$, $ \tan\alpha$ and $ \cot\alpha$, taken in some order, are consecutive terms of an arithmetic progression?
2024 IFYM, Sozopol, 3
Find all functions \( f:\mathbb{Z} \to \mathbb{Z} \) such that
\[
f(x + f(y) - 2y) + f(f(y)) = f(x)
\]
for all integers \( x \) and \( y \).
2006 AMC 12/AHSME, 13
The vertices of a $ 3 \minus{} 4 \minus{} 5$ right triangle are the centers of three mutually externally tangent circles, as shown. What is the sum of the areas of the three circles?
[asy]unitsize(5mm);
defaultpen(fontsize(10pt)+linewidth(.8pt));
pair B=(0,0), C=(5,0);
pair A=intersectionpoints(Circle(B,3),Circle(C,4))[0];
draw(A--B--C--cycle);
draw(Circle(C,3));
draw(Circle(A,1));
draw(Circle(B,2));
label("$A$",A,N);
label("$B$",B,W);
label("$C$",C,E);
label("3",midpoint(B--A),NW);
label("4",midpoint(A--C),NE);
label("5",midpoint(B--C),S);[/asy]$ \textbf{(A) } 12\pi\qquad \textbf{(B) } \frac {25\pi}{2}\qquad \textbf{(C) } 13\pi\qquad \textbf{(D) } \frac {27\pi}{2}\qquad \textbf{(E) } 14\pi$
1989 IMO Longlists, 95
Let $ n$ be a positive integer, $ X \equal{} \{1, 2, \ldots , n\},$ and $ k$ a positive integer such that $ \frac{n}{2} \leq k \leq n.$ Determine, with proof, the number of all functions $ f : X \mapsto X$ that satisfy the following conditions:
[b](i)[/b] $ f^2 \equal{} f;$
[b](ii)[/b] the number of elements in the image of $ f$ is $ k;$
[b](iii)[/b] for each $ y$ in the image of $ f,$ the number of all points $ x \in X$ such that $ f(x)\equal{}y$ is at most $ 2.$
2011 Laurențiu Duican, 3
Let $ n\ge 2 $ be a perfect square and let be $ n $ natural numbers $ m_1,m_2,\ldots ,m_n. $ Prove that if the polynom
$$ X^2-\left( 1+ m_1^2+m_2^2+\cdots +m_n^2 \right) X+m_1m_2+m_2m_3+\cdots +m_{n-1}m_n +m_nm_1\in \mathbb{N} [X] $$
is reducible, then its two roots are perfect squares.
2019 Romanian Masters In Mathematics, 5
Determine all functions $f: \mathbb{R} \to \mathbb{R}$ satisfying
\[f(x + yf(x)) + f(xy) = f(x) + f(2019y),\]
for all real numbers $x$ and $y$.
2008 Germany Team Selection Test, 1
Determine $ Q \in \mathbb{R}$ which is so big that a sequence with non-negative reals elements $ a_1 ,a_2, \ldots$ which satisfies the following two conditions:
[b](i)[/b] $ \forall m,n \geq 1$ we have $ a_{m \plus{} n} \leq 2 \left(a_m \plus{} a_n \right)$
[b](ii)[/b] $ \forall k \geq 0$ we have $ a_{2^k} \leq \frac {1}{(k \plus{} 1)^{2008}}$
such that for each sequence element we have the inequality $ a_n \leq Q.$
2020 Korean MO winter camp, #3
Find all integer coefficient polynomials $Q$ such that
[list]
[*] $Q(n)\ge 1$ $\forall n\in \mathbb{Z}_+$.
[*] $Q(mn)$ and $Q(m)Q(n)$ have the same number of prime divisors $\forall m,n\in\mathbb{Z}_+$.
[/list]
2024 Korea Junior Math Olympiad (First Round), 6.
Find the number of $ x $ which follows the following :
$ x-\frac{1}{x}=[x]-[\frac{1}{x}] $
$ ( \frac{1}{100} \le x \le {100} ) $
2024 JHMT HS, 5
Compute the positive difference between the two solutions to the equation $2x^2-28x+9=0$.
2017 Moldova Team Selection Test, 6
Let $a,b,c$ be positive real numbers that satisfy $a+b+c=abc$. Prove that
$$\sqrt{(1+a^2)(1+b^2)}+\sqrt{(1+b^2)(1+c^2)}+\sqrt{(1+a^2)(1+c^2)}-\sqrt{(1+a^2)(1+b^2)(1+c^2)} \ge 4.$$
2015 Silk Road, 1 (original)
Given positive real numbers $a,b,c,d$ such that
$ \frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}=6 \quad \text{and} \quad \frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}=36.$
Prove the inequality
${{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}>ab+ac+ad+bc+bd+cd.$
2021 Moldova EGMO TST, 12
Find all real numbers $y$, for which there exists at least one real number $x$ such that $y=\frac{\sqrt{x^2+4}}{\sqrt{x^2+1}+\sqrt{x^2+9}}.$
2024 IMO, 1
Determine all real numbers $\alpha$ such that, for every positive integer $n,$ the integer
$$\lfloor\alpha\rfloor +\lfloor 2\alpha\rfloor +\cdots +\lfloor n\alpha\rfloor$$
is a multiple of $n.$ (Note that $\lfloor z\rfloor$ denotes the greatest integer less than or equal to $z.$ For example, $\lfloor -\pi\rfloor =-4$ and $\lfloor 2\rfloor= \lfloor 2.9\rfloor =2.$)
[i]Proposed by Santiago Rodríguez, Colombia[/i]
2002 AMC 10, 19
If $a,b,c$ are real numbers such that $a^2+2b=7$, $b^2+4c=-7$, and $c^2+6a=-14$, find $a^2+b^2+c^2$.
$\textbf{(A) }14\qquad\textbf{(B) }21\qquad\textbf{(C) }28\qquad\textbf{(D) }35\qquad\textbf{(E) }49$
II Soros Olympiad 1995 - 96 (Russia), 11.1
Find $a$ and $b$ for which the largest and smallest is values of the function $y=\frac{x^2+ax+b}{x^2-x+1}$ are equal to the $2$ and $-3$ respectively.
2010 Contests, 1
The real numbers $a$, $b$, $c$, $d$ satisfy simultaneously the equations
\[abc -d = 1, \ \ \ bcd - a = 2, \ \ \ cda- b = 3, \ \ \ dab - c = -6.\] Prove that $a + b + c + d \not = 0$.
1992 IMO Longlists, 47
Evaluate
\[\left \lfloor \ \prod_{n=1}^{1992} \frac{3n+2}{3n+1} \ \right \rfloor\]