This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2009 IMS, 4

In this infinite tree, degree of each vertex is equal to 3. A real number $ \lambda$ is given. We want to assign a real number to each node in such a way that for each node sum of numbers assigned to its neighbors is equal to $ \lambda$ times of the number assigned to this node. Find all $ \lambda$ for which this is possible.

2025 Vietnam Team Selection Test, 1

Find all functions $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ such that $$\dfrac{f(x)f(y)}{f(xy)} = \dfrac{\left( \sqrt{f(x)} + \sqrt{f(y)} \right)^2}{f(x+y)}$$ holds for all positive rational numbers $x, y$.

ABMC Team Rounds, 2022

[u]Round 1[/u] [b]1.1[/b] If the sum of two non-zero integers is $28$, then find the largest possible ratio of these integers. [b]1.2[/b] If Tom rolls a eight-sided die where the numbers $1$ − $8$ are all on a side, let $\frac{m}{n}$ be the probability that the number is a factor of $16$ where $m, n$ are relatively prime positive integers. Find $m + n$. [b]1.3[/b] The average score of $35$ second graders on an IQ test was $180$ while the average score of $70$ adults was $90$. What was the total average IQ score of the adults and kids combined? [u]Round 2[/u] [b]2.1[/b] So far this year, Bob has gotten a $95$ and a 98 in Term $1$ and Term $2$. How many different pairs of Term $3$ and Term $4$ grades can Bob get such that he finishes with an average of $97$ for the whole year? Bob can only get integer grades between $0$ and $100$, inclusive. [b]2.2[/b] If a complement of an angle $M$ is one-third the measure of its supplement, then what would be the measure (in degrees) of the third angle of an isosceles triangle in which two of its angles were equal to the measure of angle $M$? [b]2.3[/b] The distinct symbols $\heartsuit, \diamondsuit, \clubsuit$ and $\spadesuit$ each correlate to one of $+, -, \times , \div$, not necessarily in that given order. Given that $$((((72 \,\, \,\, \diamondsuit \,\, \,\,36) \,\, \,\,\spadesuit \,\, \,\,0 ) \,\, \,\, \diamondsuit \,\, \,\, 32) \,\, \,\, \clubsuit \,\, \,\, 3)\,\, \,\, \heartsuit \,\, \,\, 2 = \,\, \,\, 6,$$ what is the value of $$(((((64 \,\, \,\, \spadesuit \,\, \,\, 8) \heartsuit \,\, \,\, 6) \,\, \,\, \spadesuit \,\, \,\, 5) \,\, \,\, \heartsuit \,\, \,\, 1) \,\, \,\, \clubsuit \,\, \,\, 7) \,\, \,\, \diamondsuit \,\, \,\, 1?$$ [u]Round 3[/u] [b]3.1[/b] How many ways can $5$ bunnies be chosen from $7$ male bunnies and $9$ female bunnies if a majority of female bunnies is required? All bunnies are distinct from each other. [b]3.2[/b] If the product of the LCM and GCD of two positive integers is $2021$, what is the product of the two positive integers? [b]3.3[/b] The month of April in ABMC-land is $50$ days long. In this month, on $44\%$ of the days it rained, and on $28\%$ of the days it was sunny. On half of the days it was sunny, it rained as well. The rest of the days were cloudy. How many days were cloudy in April in ABMC-land? [u]Round 4[/u] [b]4.1[/b] In how many ways can $4$ distinct dice be rolled such that a sum of $10$ is produced? [b]4.2[/b] If $p, q, r$ are positive integers such that $p^3\sqrt{q}r^2 = 50$, find the sum of all possible values of $pqr$. [b]4.3[/b] Given that numbers $a, b, c$ satisfy $a + b + c = 0$, $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}= 10$, and $ab + bc + ac \ne 0$, compute the value of $\frac{-a^2 - b^2 - a^2}{ab + bc + ac}$. PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2826137p24988781]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1988 IMO Longlists, 17

If $ n$ runs through all the positive integers, then $ f(n) \equal{} \left \lfloor n \plus{} \sqrt {3n} \plus{} \frac {1}{2} \right \rfloor$ runs through all positive integers skipping the terms of the sequence $ a_n \equal{} \left \lfloor \frac {n^2 \plus{} 2n}{3} \right \rfloor$.

2016 ISI Entrance Examination, 2

Consider the polynomial $ax^3+bx^2+cx+d$ where $a,b,c,d$ are integers such that $ad$ is odd and $bc$ is even.Prove that not all of its roots are rational..

2009 Germany Team Selection Test, 1

Let $n$ be a positive integer and let $p$ be a prime number. Prove that if $a$, $b$, $c$ are integers (not necessarily positive) satisfying the equations \[ a^n + pb = b^n + pc = c^n + pa\] then $a = b = c$. [i]Proposed by Angelo Di Pasquale, Australia[/i]

2012 Kosovo National Mathematical Olympiad, 1

Tags: algebra
If $(x^2-x-1)^n=a_{2n}x^{2n}+a_{2n-1}x^{2n-1}+...+a_1x+a_0$, where $a_i,i\in\{0,1,2,..,2n\}$, find $a_1+a_3+...+a_{2n-1}$ and $a_0+a_2+a_4+...+a_{2n}$.

MathLinks Contest 4th, 3.1

Tags: algebra
Let $\{f_n\}_{n\ge 1}$ be the Fibonacci sequence, defined by $f_1 = f_2 = 1$, and for all positive integers $n$, $f_{n+2} = f_{n+1} + f_n$. Prove that the following inequality takes place for all positive integers $n$: $${n \choose 1}f_1 +{n \choose 2}f_2+... +{n \choose n}f_n < \frac{(2n + 2)^n}{n!}$$ .

2003 China Team Selection Test, 2

Tags: algebra
Given an integer $a_1$($a_1 \neq -1$), find a real number sequence $\{ a_n \}$($a_i \neq 0, i=1,2,\cdots,5$) such that $x_1,x_2,\cdots,x_5$ and $y_1,y_2,\cdots,y_5$ satisfy $b_{i1}x_1+b_{i2}x_2+\cdots +b_{i5}x_5=2y_i$, $i=1,2,3,4,5$, then $x_1y_1+x_2y_2+\cdots+x_5y_5=0$, where $b_{ij}=\prod_{1 \leq k \leq i} (1+ja_k)$.

2005 VJIMC, Problem 3

Find all reals $\lambda$ for which there is a nonzero polynomial $P$ with real coefficients such that $$\frac{P(1)+P(3)+P(5)+\ldots+P(2n-1)}n=\lambda P(n)$$for all positive integers $n$, and find all such polynomials for $\lambda=2$.

2019 Taiwan APMO Preliminary Test, P7

Let positive integer $k$ satisfies $1<k<100$. For the permutation of $1,2,...,100$ be $a_1,a_2,...,a_{100}$, take the minimum $m>k$ such that $a_m$ is at least less than $(k-1)$ numbers of $a_1,a_2,...,a_k$. We know that the number of sequences satisfies $a_m=1$ is $\frac{100!}{4}$. Find the all possible values of $k$.

2007 Romania Team Selection Test, 3

The problem is about real polynomial functions, denoted by $f$, of degree $\deg f$. a) Prove that a polynomial function $f$ can`t be wrriten as sum of at most $\deg f$ periodic functions. b) Show that if a polynomial function of degree $1$ is written as sum of two periodic functions, then they are unbounded on every interval (thus, they are "wild"). c) Show that every polynomial function of degree $1$ can be written as sum of two periodic functions. d) Show that every polynomial function $f$ can be written as sum of $\deg f+1$ periodic functions. e) Give an example of a function that can`t be written as a finite sum of periodic functions. [i]Dan Schwarz[/i]

2021 India National Olympiad, 2

Find all pairs of integers $(a,b)$ so that each of the two cubic polynomials $$x^3+ax+b \, \, \text{and} \, \, x^3+bx+a$$ has all the roots to be integers. [i]Proposed by Prithwijit De and Sutanay Bhattacharya[/i]

2019 ELMO Shortlist, A4

Find all nondecreasing functions $f:\mathbb R\to \mathbb R$ such that, for all $x,y\in \mathbb R$, $$f(f(x))+f(y)=f(x+f(y))+1.$$ [i]Proposed by Carl Schildkraut[/i]

2017 China Team Selection Test, 4

Find out all the integer pairs $(m,n)$ such that there exist two monic polynomials $P(x)$ and $Q(x)$ ,with $\deg{P}=m$ and $\deg{Q}=n$,satisfy that $$P(Q(t))\not=Q(P(t))$$ holds for any real number $t$.

2008 Indonesia TST, 1

A polynomial $P(x) = 1 + x^2 + x^5 + x^{n_1} + ...+ x^{n_s} + x^{2008}$ with $n_1, ..., n_s$ are positive integers and $5 < n_1 < ... <n_s < 2008$ are given. Prove that if $P(x)$ has at least a real root, then the root is not greater than $\frac{1-\sqrt5}{2}$

2014 AIME Problems, 9

Let $x_1<x_2<x_3$ be three real roots of equation $\sqrt{2014}x^3-4029x^2+2=0$. Find $x_2(x_1+x_3)$.

2007 All-Russian Olympiad, 1

Tags: algebra , quadratic
Unitary quadratic trinomials $ f(x)$ and $ g(x)$ satisfy the following interesting condition: $ f(g(x)) \equal{} 0$ and $ g(f(x)) \equal{} 0$ do not have real roots. Prove that at least one of equations $ f(f(x)) \equal{} 0$ and $ g(g(x)) \equal{} 0$ does not have real roots too. [i]S. Berlov [/i]

2004 National High School Mathematics League, 8

Function $f:\mathbb{R}\to\mathbb{R}$, satisfies that $f(0)=1$, and $f(xy+1)=f(x)f(y)-f(y)-x+2$, then $f(x)=$________.

2021 Peru Iberoamerican Team Selection Test, P6

For each integer $n\ge 1,$ compute the smallest possible value of \[\sum_{k=1}^{n}\left\lfloor\frac{a_k}{k}\right\rfloor\] over all permutations $(a_1,\dots,a_n)$ of $\{1,\dots,n\}.$ [i]Proposed by Shahjalal Shohag, Bangladesh[/i]

2005 USAMTS Problems, 4

Find, with proof, all triples of real numbers $(a, b, c)$ such that all four roots of the polynomial $f(x) = x^4 +ax^3 +bx^2 +cx+b$ are positive integers. (The four roots need not be distinct.)

1966 IMO Longlists, 10

How many real solutions are there to the equation $x = 1964 \sin x - 189$ ?

2020 OMMock - Mexico National Olympiad Mock Exam, 6

Find all functions $f \colon \mathbb{R} \to \mathbb{R}$ such that \[f(f(x) - y) = f(xy) + f(x)f(-y)\] for any two real numbers $x, y$. [i]Proposed by Pablo Valeriano[/i]

1999 Bosnia and Herzegovina Team Selection Test, 3

Let $f : [0,1] \rightarrow \mathbb{R}$ be injective function such that $f(0)+f(1)=1$. Prove that exists $x_1$, $x_2 \in [0,1]$, $x_1 \neq x_2$ such that $2f(x_1)<f(x_2)+\frac{1}{2}$. After that state at least one generalization of this result

2021 Austrian MO National Competition, 1

Let $a,b,c\geq 0$ and $a+b+c=1.$ Prove that$$\frac{a}{2a+1}+\frac{b}{3b+1}+\frac{c}{6c+1}\leq \frac{1}{2}.$$ [size=50](Marian Dinca)[/size]