Found problems: 15925
2010 Junior Balkan Team Selection Tests - Moldova, 6
In a right triangle with the length legs $b$ and $c$, and the length hypotenuse $a$, the ratio between the length of the hypotenuse and the length of the diameter of the inscribed circle does not exceed $1 + \sqrt2$. Determine the numerical value of the expression of $E =\frac{a}{b + c}+\frac{b}{c + a}+\frac{c}{a + b}$.
2010 Indonesia TST, 3
Let $ a_1,a_2,\dots$ be sequence of real numbers such that $ a_1\equal{}1$, $ a_2\equal{}\dfrac{4}{3}$, and \[ a_{n\plus{}1}\equal{}\sqrt{1\plus{}a_na_{n\minus{}1}}, \quad \forall n \ge 2.\] Prove that for all $ n \ge 2$, \[ a_n^2>a_{n\minus{}1}^2\plus{}\dfrac{1}{2}\] and \[ 1\plus{}\dfrac{1}{a_1}\plus{}\dfrac{1}{a_2}\plus{}\dots\plus{}\dfrac{1}{a_n}>2a_n.\]
[i]Fajar Yuliawan, Bandung[/i]
Mid-Michigan MO, Grades 5-6, 2005
[b]p1.[/b] Is there an integer such that the product of all whose digits equals $99$ ?
[b]p2.[/b] An elevator in a $100$ store building has only two buttons: UP and DOWN. The UP button makes the elevator go $13$ floors up, and the DOWN button makes it go $8$ floors down. Is it possible to go from the $13$th floor to the $8$th floor?
[b]p3.[/b] Cut the triangle shown in the picture into three pieces and rearrange them into a rectangle. (Pieces can not overlap.)
[img]https://cdn.artofproblemsolving.com/attachments/9/f/359d3b987012de1f3318c3f06710daabe66f28.png[/img]
[b]p4.[/b] Two players Tom and Sid play the following game. There are two piles of rocks, $5$ rocks in the first pile and $6$ rocks in the second pile. Each of the players in his turn can take either any amount of rocks from one pile or the same amount of rocks from both piles. The winner is the player who takes the last rock. Who does win in this game if Tom starts the game?
[b]p5.[/b] In the next long multiplication example each letter encodes its own digit. Find these digits.
$\begin{tabular}{ccccc}
& & & a & b \\
* & & & c & d \\
\hline
& & c & e & f \\
+ & & a & b & \\
\hline
& c & f & d & f \\
\end{tabular}$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1955 Poland - Second Round, 1
Calculate the sum $ x^4 + y^4 + z^4 $ knowing that $ x + y + z = 0 $ and $ x^2 + y^2 + z^2 = a $, where $ a $ is a given positive number.
2016 Costa Rica - Final Round, N1
Find all $x \in R$ such that $$ x - \left[ \frac{x}{2016} \right]= 2016$$, where $[k]$ represents the largest smallest integer or equal to $k$.
2012 Online Math Open Problems, 26
Find the smallest positive integer $k$ such that
\[\binom{x+kb}{12} \equiv \binom{x}{12} \pmod{b}\]
for all positive integers $b$ and $x$. ([i]Note:[/i] For integers $a,b,c$ we say $a \equiv b \pmod c$ if and only if $a-b$ is divisible by $c$.)
[i]Alex Zhu.[/i]
[hide="Clarifications"][list=1][*]${{y}\choose{12}} = \frac{y(y-1)\cdots(y-11)}{12!}$ for all integers $y$. In particular, ${{y}\choose{12}} = 0$ for $y=1,2,\ldots,11$.[/list][/hide]
2022 BMT, 3
Suppose we have four real numbers $a,b,c,d$ such that $a$ is nonzero, $a,b,c$ form a geometric sequence, in that order, and $b,c,d$ form an arithmetic sequence, in that order. Compute the smallest possible value of $\frac{d}{a}.$ (A geometric sequence is one where every succeeding term can be written as the previous term multiplied by a constant, and an arithmetic sequence is one where every succeeeding term can be written as the previous term added to a constant.)
2010 IberoAmerican Olympiad For University Students, 4
Let $p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ be a monic polynomial of degree $n>2$, with real coefficients and all its roots real and different from zero. Prove that for all $k=0,1,2,\cdots,n-2$, at least one of the coefficients $a_k,a_{k+1}$ is different from zero.
2020 Princeton University Math Competition, A2/B4
Let $C$ denote the curve $y^2 =\frac{x(x+1)(2x+1)}{6}$. The points $(1/2, a)$,$(b, c)$, and $(24, d)$ lie on $C$ and are collinear, and $ad < 0$. Given that $b, c$ are rational numbers, find $100b^2 + c^2$.
2008 Gheorghe Vranceanu, 2
Prove that the only morphisms from a finite symmetric group to the multiplicative group of rational numbers are the identity and the signature.
2012 Mathcenter Contest + Longlist, 5
Let $a,b,c>0$ and $a+b+c+abc=4$. Prove that $$\frac{a}{\sqrt{b+c}}+\frac{b}{\sqrt{c+a}}+\frac{c}{\sqrt{a+b} }\ge \frac{1}{\sqrt{2}}(a+b+c).$$
[i](Zhuge Liang)[/i]
1997 IMO Shortlist, 22
Does there exist functions $ f,g: \mathbb{R}\to\mathbb{R}$ such that $ f(g(x)) \equal{} x^2$ and $ g(f(x)) \equal{} x^k$ for all real numbers $ x$
a) if $ k \equal{} 3$?
b) if $ k \equal{} 4$?
2022 Baltic Way, 5
Let $\mathbb{R}$ be the set of real numbers. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(0)+1=f(1)$ and for any real numbers $x$ and $y$,
$$ f(xy-x)+f(x+f(y))=yf(x)+3 $$
1980 IMO, 3
Prove that the equation \[ x^n + 1 = y^{n+1}, \] where $n$ is a positive integer not smaller then 2, has no positive integer solutions in $x$ and $y$ for which $x$ and $n+1$ are relatively prime.
2014 Israel National Olympiad, 6
Let $n$ be a positive integer. Find the maximal real number $k$, such that the following holds:
For any $n$ real numbers $x_1,x_2,...,x_n$, we have $\sqrt{x_1^2+x_2^2+\dots+x_n^2}\geq k\cdot\min(|x_1-x_2|,|x_2-x_3|,...,|x_{n-1}-x_n|,|x_n-x_1|)$
2023 Saint Petersburg Mathematical Olympiad, 5
Let $a>1$ be a positive integer and let $f(n)=n+[a\{n\sqrt{2}\}]$. Show that there exists a positive integer $n$, such that $f(f(n))=f(n)$, but $f(n) \neq n$.
2021 Israel TST, 2
Find all unbounded functions $f:\mathbb Z \rightarrow \mathbb Z$ , such that $f(f(x)-y)|x-f(y)$ holds for any integers $x,y$.
II Soros Olympiad 1995 - 96 (Russia), 10.2
Without using a calculator, find out what is greater: $\sin 28^o$ or $tg21^o$?
2013 India PRMO, 16
Let $f(x) = x^3 - 3x + b$ and $g(x) = x^2 + bx -3$, where $b$ is a real number. What is the sum of all possible values of $b$ for which the equations $f(x)$ = 0 and $g(x) = 0$ have a common root?
2010 Saudi Arabia Pre-TST, 4.4
Find all pairs $(x, y)$ of real numbers that satisfy the system of equations
$$\begin{cases} x^4 + 2z^3 - y =\sqrt3 - \dfrac14 \\
y^4 + 2y^3 - x = - \sqrt3 - \dfrac14 \end{cases}$$
1975 IMO Shortlist, 3
Find the integer represented by $\left[ \sum_{n=1}^{10^9} n^{-2/3} \right] $. Here $[x]$ denotes the greatest integer less than or equal to $x.$
1979 Bundeswettbewerb Mathematik, 4
Prove that the polynomial $P(x) = x^5-x+a$ is irreducible over $\mathbb{Z}$ if $5 \nmid a$.
1960 AMC 12/AHSME, 1
If $2$ is a solution (root) of $x^3+hx+10=0$, then $h$ equals:
$ \textbf{(A) }10\qquad\textbf{(B) }9 \qquad\textbf{(C) }2\qquad\textbf{(D) }-2\qquad\textbf{(E) }-9 $
2013 Stars Of Mathematics, 4
Given a (fixed) positive integer $N$, solve the functional equation
\[f \colon \mathbb{Z} \to \mathbb{R}, \ f(2k) = 2f(k) \textrm{ and } f(N-k) = f(k), \ \textrm{for all } k \in \mathbb{Z}.\]
[i](Dan Schwarz)[/i]
2001 IMO Shortlist, 3
Let $x_1,x_2,\ldots,x_n$ be arbitrary real numbers. Prove the inequality
\[
\frac{x_1}{1+x_1^2} + \frac{x_2}{1+x_1^2 + x_2^2} + \cdots +
\frac{x_n}{1 + x_1^2 + \cdots + x_n^2} < \sqrt{n}.
\]