Found problems: 15925
2000 Junior Balkan Team Selection Tests - Romania, 3
Let be a real number $ a. $ For any real number $ p $ and natural number $ k, $ let be the set
$$ A_k(p)=\{ px\in\mathbb{Z}\mid k=\lceil x \rceil \} . $$
Find all real numbers $ b $ such that $ \# A_n(a)=\# A_n(b) , $ for any natural number $ n. $
$ \# $ [i]denotes the cardinal.[/i]
[i]Eugen Păltânea[/i]
2005 Georgia Team Selection Test, 4
Find all polynomials with real coefficients, for which the equality
\[ P(2P(x)) \equal{} 2P(P(x)) \plus{} 2(P(x))^{2}\]
holds for any real number $ x$.
2021 CMIMC, 1.5
Suppose $f$ is a degree 42 polynomial such that for all integers $0\le i\le 42$,
$$f(i)+f(43+i)+f(2\cdot43+i)+\cdots+f(46\cdot43+i)=(-2)^i$$
Find $f(2021)-f(0)$.
[i]Proposed by Adam Bertelli[/i]
2012 Greece Team Selection Test, 3
Let $a,b,c$ be positive real numbers satisfying $a+b+c=3$.Prove that $\sum_{sym} \frac{a^{2}}{(b+c)^{3}}\geq \frac{3}{8}$
2008 Korean National Olympiad, 2
We have $x_i >i$ for all $1 \le i \le n$.
Find the minimum value of $\frac{(\sum_{i=1}^n x_i)^2}{\sum_{i=1}^n \sqrt{x^2_i - i^2}}$
2011 Belarus Team Selection Test, 3
Find all functions $f:R\to R$ such that for all real $x,y$ with $y\ne 0$ $$f(x-f(x/y))=xf(1-f(1/y))$$ and
a) $f(1-f(1))\ne 0$
b) $ f(1-f(1))= 0$
S. Kuzmich, I.Voronovich
2012 Brazil Team Selection Test, 3
Determine all sequences $(x_1,x_2,\ldots,x_{2011})$ of positive integers, such that for every positive integer $n$ there exists an integer $a$ with \[\sum^{2011}_{j=1} j x^n_j = a^{n+1} + 1\]
[i]Proposed by Warut Suksompong, Thailand[/i]
2017 Bulgaria National Olympiad, 4
Find all triples (p,a,m); p is a prime number, $a,m\in \mathbb{N}$, which satisfy: $a\leq 5p^2$ and $(p-1)!+a=p^m$.
2010 239 Open Mathematical Olympiad, 8
For positive numbers $x$, $y$, and $z$, we know that $x + y^2 + z^3 = 1$. Prove that
$$\frac{x}{2 + xy} + \frac{y}{2 + yz} + \frac{z}{2 + zx} > \frac{1}{2} .$$
2022 Auckland Mathematical Olympiad, 9
Does there exist a function $f(n)$, which maps the set of natural numbers into itself and such that for each natural number $n > 1$ the following equation is satisfied $$f(n) = f(f(n - 1)) + f(f(n + 1))?$$
1969 Swedish Mathematical Competition, 3
$a_1 \le a_2 \le ... \le a_n$ is a sequence of reals $b_1, _b2, b_3,..., b_n$ is any rearrangement of the sequence $B_1 \le B_2 \le ...\le B_n$. Show that $\sum a_ib_i \le \sum a_i B_i$.
2016 Brazil Team Selection Test, 1
Determine all functions $f$ from the set of non-negative integers to itself such that $f(a + b) = f(a) + f(b) + f(c) + f(d)$, whenever $a, b, c, d$, are non-negative integers satisfying $2ab = c^2 + d^2$.
2022 Nordic, 1
Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that
$f(f(x)f(1-x))=f(x)$ and $f(f(x))=1-f(x)$,
for all real $x$.
Mid-Michigan MO, Grades 7-9, 2023
[b]p1.[/b] Three camps are located in the vertices of an equilateral triangle. The roads connecting camps are along the sides of the triangle. Captain America is inside the triangle and he needs to know the distances between camps. Being able to see the roads he has found that the sum of the shortest distances from his location to the roads is 50 miles. Can you help Captain America to evaluate the distances between the camps?
[b]p2.[/b] $N$ regions are located in the plane, every pair of them have a non-empty overlap. Each region is a connected set, that means every two points inside the region can be connected by a curve all points of which belong to the region. Iron Man has one charge remaining to make a laser shot. Is it possible for him to make the shot that goes through all $N$ regions?
[b]p3.[/b] Money in Wonderland comes in $\$5$ and $\$7$ bills.
(a) What is the smallest amount of money you need to buy a slice of pizza that costs $\$1$ and get back your change in full? (The pizza man has plenty of $\$5$ and $\$7$ bills.) For example, having $\$7$ won't do since the pizza man can only give you $\$5$ back.
(b) Vending machines in Wonderland accept only exact payment (do not give back change). List all positive integer numbers which CANNOT be used as prices in such vending machines. (That is, find the sums of money that cannot be paid by exact change.)
[b]p4.[/b] (a) Put $5$ points on the plane so that each $3$ of them are vertices of an isosceles triangle (i.e., a triangle with two equal sides), and no three points lie on the same line.
(b) Do the same with $6$ points.
[b]p5.[/b] Numbers $1,2,3,…,100$ are randomly divided in two groups $50$ numbers in each. In the first group the numbers are written in increasing order and denoted $a_1,a_2, ..., a_{50}$. In the second group the numberss are written in decreasing order and denoted $b_1,b_2, ..., b_{50}$. Thus $a_1<a_2<...<a_{50}$ and $ b_1>b_2>...>b_{50}$. Evaluate $|a_1-b_1|+|a_2-b_2|+...+|a_{50}-b_{50}|$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2012 Romania Team Selection Test, 1
Prove that for any positive integer $n\geq 2$ we have that \[\sum_{k=2}^n \lfloor \sqrt[k]{n}\rfloor=\sum_{k=2}^n\lfloor\log_{k}n\rfloor.\]
2014 Paenza, 3
Find all $(m,n)$ in $\mathbb{N}^2$ such that $m\mid n^2+1$ and $n\mid m^2+1$.
1998 Rioplatense Mathematical Olympiad, Level 3, 2
Given an integer $n > 2$, consider all sequences $x_1,x_2,...,x_n$ of nonnegative real numbers such that $$x_1+ 2x_2 + ... + nx_n = 1.$$ Find the maximum value and the minimum value of $x_1^2+x_2^2+...+x_n^2$ and determine all the sequences $x_1,x_2,...,x_n$ for which these values are obtained.
2024 Belarusian National Olympiad, 9.1
Find all triples $(x,y,z)$ of positive real numbers such that
$$
\begin{cases}
2x^2+y^3=3 \\
3y^2+z^3=4 \\
4z^2+x^3=5 \\
\end{cases}
$$
[i]M. Zorka[/i]
1988 All Soviet Union Mathematical Olympiad, 484
What is the smallest $n$ for which there is a solution to $$\begin{cases} \sin x_1 + \sin x_2 + ... + \sin x_n = 0 \\ \sin x_1 + 2 \sin x_2 + ... + n \sin x_n = 100 \end{cases}$$ ?
2007 District Olympiad, 1
We say that a function $f: \mathbb{N}\rightarrow\mathbb{N}$ has the $(\mathcal{P})$ property if, for any $y\in\mathbb{N}$, the equation $f(x)=y$ has exactly 3 solutions.
a) Prove that there exist an infinity of functions with the $(\mathcal{P})$ property ;
b) Find all monotonously functions with the $(\mathcal{P})$ property ;
c) Do there exist monotonously functions $f: \mathbb{Q}\rightarrow\mathbb{Q}$ satisfying the $(\mathcal{P})$ property ?
2009 Baltic Way, 1
A polynomial $p(x)$ of degree $n\ge 2$ has exactly $n$ real roots, counted with multiplicity. We know that the coefficient of $x^n$ is $1$, all the roots are less than or equal to $1$, and $p(2)=3^n$. What values can $p(1)$ take?
2011 IFYM, Sozopol, 7
We define the sequence
$x_1=n,y_1=1,x_{i+1}=[\frac{x_i+y_i}{2}],y_{i+1}=[\frac{n}{x_{i+1}} ]$.
Prove that $min\{ x_1, x_2, ..., x_n\}=[\sqrt{n}]$ .
2019 Belarusian National Olympiad, 10.7
The numbers $S_1=2^2, S_2=2^4,\ldots, S_n=2^{2n}$ are given. A rectangle $OABC$ is constructed on the Cartesian plane according to these numbers. For this, starting from the point $O$ the points $A_1,A_2,\ldots,A_n$ are consistently marked along the axis $Ox$, and the points $C_1,C_2,\ldots,C_n$ are consistently marked along the axis $Oy$ in such a way that for all $k$ from $1$ to $n$ the lengths of the segments $A_{k-1}A_k=x_k$ and $C_{k-1}C_k=y_k$ are positive integers (let $A_0=C_0=O$, $A_n=A$, and $C_n=C$) and $x_k\cdot y_k=S_k$.
[b]a)[/b] Find the maximal possible value of the area of the rctangle $OABC$ and all pairs of sets $(x_1,x_2,\ldots,x_k)$ and $(y_1,y_2,\ldots,y_k)$ at which this maximal area is achieved.
[b]b)[/b] Find the minimal possible value of the area of the rctangle $OABC$ and all pairs of sets $(x_1,x_2,\ldots,x_k)$ and $(y_1,y_2,\ldots,y_k)$ at which this minimal area is achieved.
[i](E. Manzhulina, B. Rublyov)[/i]
2009 China Team Selection Test, 3
Consider function $ f: R\to R$ which satisfies the conditions for any mutually distinct real numbers $ a,b,c,d$ satisfying $ \frac {a \minus{} b}{b \minus{} c} \plus{} \frac {a \minus{} d}{d \minus{} c} \equal{} 0$, $ f(a),f(b),f(c),f(d)$ are mutully different and $ \frac {f(a) \minus{} f(b)}{f(b) \minus{} f(c)} \plus{} \frac {f(a) \minus{} f(d)}{f(d) \minus{} f(c)} \equal{} 0.$ Prove that function $ f$ is linear
Kettering MO, 2019
[b]p1.[/b] At $8$ AM Black Widow and Hawkeye began to move towards each other from two cities. They were planning to meet at the midpoint between two cities, but because Black Widow was driving $100$ mi/h faster than Hawkeye, they met at the point that is located $120$ miles from the midpoint. When they met Black Widow said ”If I knew that you drive so slow I would have started one hour later, and then we would have met exactly at the midpoint”. Find the distance between cities.
[b]p2.[/b] Solve the inequality: $\frac{x-1}{x-2} \le \frac{x-2}{x-1}$.
[b]p3.[/b] Solve the equation: $(x - y - z)^2 + (2x - 3y + 2z + 4)^2 + (x + y + z - 8)^2 = 0$.
[b]p4.[/b] Three camps are located in the vertices of an equilateral triangle. The roads connecting camps are along the sides of the triangle. Captain America is inside the triangle and he needs to know the distances between camps. Being able to see the roads he has found that the sum of the shortest distances from his location to the roads is $50$ miles. Can you help Captain America to evaluate the distances between the camps.
[b]p5.[/b] $N$ regions are located in the plane, every pair of them have a nonempty overlap. Each region is a connected set, that means every two points inside the region can be connected by a curve all points of which belong to the region. Iron Man has one charge remaining to make a laser shot. Is it possible for him to make the shot that goes through all $N$ regions?
[b]p6.[/b] Numbers $1, 2, . . . , 100$ are randomly divided in two groups $50$ numbers in each. In the first group the numbers are written in increasing order and denoted $a_1$, $a_2$, $...$ , $a_{50}$. In the second group the numbers are written in decreasing order and denoted $b_1$, $b_2$, $...$, $b_{50}$. Thus, $a_1 < a_2 < ... < a_{50}$ and $b_1 > b2_ > ... > b_{50}$. Evaluate $|a_1 - b_1| + |a_2 - b_2| + ... + |a_{50} - b_{50}|$.
PS. You should use hide for answers.