This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1960 Poland - Second Round, 1

Prove that if the real numbers $ a $ and $ b $ are not both equal to zero, then for every natural $ n $ $$ a^{2n} + a^{2n-1}b + a^{2n-2} b^2 + \ldots + ab^{2n-1} + b^{2n} > 0. $$

2014 Contests, 1

Determine the value of the expression $x^2 + y^2 + z^2$, if $x + y + z = 13$ , $xyz= 72$ and $\frac1x + \frac1y + \frac1z = \frac34$.

1988 IMO Longlists, 2

Let $\left[\sqrt{(n+1)^2 + n^2} \right], n = 1,2, \ldots,$ where $[x]$ denotes the integer part of $x.$ Prove that [b]i.)[/b] there are infinitely many positive integers $m$ such that $a_{m+1} - a_m > 1;$ [b]ii.)[/b] there are infinitely many positive integers $m$ such that $a_{m+1} - a_m = 1.$

1998 Singapore MO Open, 4

Let $n$ be a fixed positive integer. Find all the positive integers $m$ such that $$\frac{m^2+4m}{a_1}+\frac{m^2+8m}{a_1+a_2}+\frac{m^2+12m}{a_1+a_2+a_3}+...+\frac{m^2+4nm}{a_1+a_2+...+a_n}<2500 \left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)$$ for any positive numbers $a_1,a_2,...,a_n$. Justify your answer.

2021 Peru EGMO TST, 1

Tags: algebra
A finite set $M$ of real numbers is called [i]special[/i] if $M$ has at least two elements and the following condition is true: If $a$ and $b$ are distinct elements of $M$ then $5\sqrt{|a|}-\frac{2b}{3}$ is also a element of $M$. a) Determine if there is a special set with (exactly) two elements. b) Determine if there is a special set with three (or more) elements such that all elements are positive.

2014 Irish Math Olympiad, 8

(a) Let $a_0, a_1,a_2$ be real numbers and consider the polynomial $P(x) = a_0 + a_1x + a_2x^2$ . Assume that $P(-1), P(0)$ and $P(1)$ are integers. Prove that $P(n)$ is an integer for all integers $n$. (b) Let $a_0,a_1, a_2, a_3$ be real numbers and consider the polynomial $Q(x) = a0 + a_1x + a_2x^2 + a_3x^3 $. Assume that there exists an integer $i$ such that $Q(i),Q(i+1),Q(i+2)$ and $Q(i+3)$ are integers. Prove that $Q(n)$ is an integer for all integers $n$.

2001 Tournament Of Towns, 3

Tags: algebra
An $8\times8$ array consists of the numbers $1,2,...,64$. Consecutive numbers are adjacent along a row or a column. What is the minimum value of the sum of the numbers along the diagonal?

1991 ITAMO, 6

Tags: sequence , algebra
We say that each positive number $x$ has two sons: $x+1$ and $\frac{x}{x+1}$. Characterize all the descendants of number $1$.

2003 District Olympiad, 1

In the interior of a cube we consider $\displaystyle 2003$ points. Prove that one can divide the cube in more than $\displaystyle 2003^3$ cubes such that any point lies in the interior of one of the small cubes and not on the faces.

2005 Greece Team Selection Test, 1

Tags: algebra , root , polynomial
The side lengths of a triangle are the roots of a cubic polynomial with rational coefficients. Prove that the altitudes of this triangle are roots of a polynomial of sixth degree with rational coefficients.

DMM Devil Rounds, 2006

[b]p1.[/b] The entrance fee the county fair is $64$ cents. Unfortunately, you only have nickels and quarters so you cannot give them exact change. Furthermore, the attendent insists that he is only allowed to change in increments of six cents. What is the least number of coins you will have to pay? [b]p2.[/b] At the county fair, there is a carnival game set up with a mouse and six cups layed out in a circle. The mouse starts at position $A$ and every ten seconds the mouse has equal probability of jumping one cup clockwise or counter-clockwise. After a minute if the mouse has returned to position $A$, you win a giant chunk of cheese. What is the probability of winning the cheese? [b]p3.[/b] A clown stops you and poses a riddle. How many ways can you distribute $21$ identical balls into $3$ different boxes, with at least $4$ balls in the first box and at least $1$ ball in the second box? [b]p4.[/b] Watch out for the pig. How many sets $S$ of positive integers are there such that the product of all the elements of the set is $125970$? [b]p5.[/b] A good word is a word consisting of two letters $A$, $B$ such that there is never a letter $B$ between any two $A$'s. Find the number of good words with length $8$. [b]p6.[/b] Evaluate $\sqrt{2 -\sqrt{2 +\sqrt{2-...}}}$ without looking. [b]p7.[/b] There is nothing wrong with being odd. Of the first $2006$ Fibonacci numbers ($F_1 = 1$, $F_2 = 1$), how many of them are even? [b]p8.[/b] Let $f$ be a function satisfying $f (x) + 2f (27- x) = x$. Find $f (11)$. [b]p9.[/b] Let $A$, $B$, $C$ denote digits in decimal representation. Given that $A$ is prime and $A -B = 4$, nd $(A,B,C)$ such that $AAABBBC$ is a prime. [b]p10.[/b] Given $\frac{x^2+y^2}{x^2-y^2} + \frac{x^2-y^2}{x^2+y^2} = k$ , find $\frac{x^8+y^8}{x^8-y^8}$ in term of $k$. [b]p11.[/b] Let $a_i \in \{-1, 0, 1\}$ for each $i = 1, 2, 3, ..., 2007$. Find the least possible value for $\sum^{2006}_{i=1}\sum^{2007}_{j=i+1} a_ia_j$. [b]p12.[/b] Find all integer solutions $x$ to $x^2 + 615 = 2^n$ for any integer $n \ge 1$. [b]p13.[/b] Suppose a parabola $y = x^2 - ax - 1$ intersects the coordinate axes at three points $A$, $B$, and $C$. The circumcircle of the triangle $ABC$ intersects the $y$ - axis again at point $D = (0, t)$. Find the value of $t$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2012 Dutch IMO TST, 5

Find all functions $f : R \to R$ satisfying $f(x + xy + f(y))=(f(x) + \frac12)(f(y) + \frac12 )$ for all $x, y \in R$.

1996 Tuymaada Olympiad, 6

Given the sequence $f_1(a)=sin(0,5\pi a)$ $f_2(a)=sin(0,5\pi (sin(0,5\pi a)))$ $...$ $f_n(a)=sin(0,5\pi (sin(...(sin(0,5\pi a))...)))$ , where $a$ is any real number. What limit aspire the members of this sequence as $n \to \infty$?

1963 Leningrad Math Olympiad, grade 6

[b]6.1 [/b] Two people went from point A to point B. The first one walked along highway at a speed of 5 km/h, and the second along a path at a speed of 4 km/h. The first of them arrived at point B an hour later and traveled 6 kilometers more. Find the distance from A to B along the highway. [b]6.2.[/b] A pedestrian walks along the highway at a speed of 5 km/hour. Along this highway in both directions at the same speed Buses run, meeting every 5 minutes. At 12 o'clock the pedestrian noticed that the buses met near him and, Continuing to walk, he began to count those oncoming and overtaking buses. At 2 p.m., buses met near him again. It turned out that during this time the pedestrian encountered 4 buses more than overtook him. Find the speed of the bus [b]6.3. [/b] Prove that the difference $43^{43} - 17^{17}$ is divisible by $10$. [b]6.4. [/b] Two squares are cut out of the chessboard on the border of the board. When is it possible and when is it not possible to cover with the remaining squares of the board? shapes of the view without overlay? [b]6.5.[/b] The distance from city A to city B (by air) is 30 kilometers, from B to C - 80 kilometers, from C to D - 236 kilometers, from D to E - 86 kilometers, from E to A- 40 kilometers. Find the distance from E to C. [b]6.6.[/b] Is it possible to write down the numbers from $ 1$ to $1963$ in a series so that any two adjacent numbers and any two numbers located one after the other were mutually prime? PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3983460_1963_leningrad_math_olympiad]here[/url].

2011 Junior Balkan Team Selection Tests - Romania, 3

a) Find the largest possible value of the number $x_1x_2 + x_2x_3 + ... + x_{n-1}x_n$, if $x_1, x_2, ... , x_n$ ($n \ge 2$) are non-negative integers and their sum is $2011$. b) Find the numbers $x_1, x_2, ... , x_n$ for which the maximum value determined at a) is obtained

2015 Saudi Arabia BMO TST, 1

Find all strictly increasing functions $f : Z \to R$ such that for any $m, n \in Z$ there exists a $k \in Z$ such that $f(k) = f(m) - f(n)$. Nguyễn Duy Thái Sơn

2018 Saint Petersburg Mathematical Olympiad, 6

Let $a,b,c,d>0$ . Prove that $a^4+b^4+c^4+d^4 \geq 4abcd+4(a-b)^2 \sqrt{abcd}$

1997 Abels Math Contest (Norwegian MO), 4

Let $p(x)$ be a polynomial with integer coefficients. Suppose that there exist different integers $a$ and $b$ such that $f(a) = b$ and $f(b) = a$. Show that the equation $f(x) = x$ has at most one integer solution.

1999 India Regional Mathematical Olympiad, 7

Find the number of quadratic polynomials $ax^2 + bx +c$ which satisfy the following: (a) $a,b,c$ are distinct; (b) $a,b,c \in \{ 1,2,3,\cdots 1999 \}$; (c) $x+1$ divides $ax^2 + bx+c$.

2003 Irish Math Olympiad, 3

Tags: algebra
For each positive integer $k$, let $a_k$ be the greatest integer not exceeding $\sqrt{k}$ and let $b_k$ be the greatest integer not exceeding $\sqrt[3]{k}$. Calculate $$\sum_{k=1}^{2003} (a_k-b_k).$$

1954 Polish MO Finals, 4

Find the values of $ x $ that satisfy the inequality $$ \sqrt{x} - \sqrt{x- a} > 2,$$ where $ a $ is a gicen poistive number.

2011 India IMO Training Camp, 2

Suppose $a_1,\ldots,a_n$ are non-integral real numbers for $n\geq 2$ such that ${a_1}^k+\ldots+{a_n}^k$ is an integer for all integers $1\leq k\leq n$. Prove that none of $a_1,\ldots,a_n$ is rational.

2024 ELMO Shortlist, A6

Tags: algebra
Let $\mathbb R^+$ denote the set of positive real numbers. Find all functions $f:\mathbb R^+\to\mathbb R$ and $g:\mathbb R^+\to\mathbb R$ such that for all $x,y\in\mathbb R^+$, $g(x)-g(y)=(x-y)f(xy)$. [i]Linus Tang[/i]

Russian TST 2014, P3

Let $x,y,z$ be real numbers. Find the minimum value of the sum \begin{align*}|\cos(x)|+|\cos(y)|+|\cos(z)|+|\cos(x-y)|+|\cos(y-z)|+|\cos(z-x)|.\end{align*}

2020 Bulgaria EGMO TST, 2

The function $f:\mathbb{R} \to \mathbb{R}$ is such that $f(f(x+1)) = x^3+1$ for all real numbers $x$. Prove that the equation $f(x) = 0 $ has exactly one real root.