Found problems: 15925
2000 All-Russian Olympiad Regional Round, 8.6
The electric train traveled from platform A to platform B in $X$ minutes ($0< X<60$). Find $X$ if it is known that as at the moment departure from A, and at the time of arrival at B, the angle between hourly and the minute hand was equal to $X$ degrees.
2023 UMD Math Competition Part I, #1
An ant walks a distance $A = 10^9$ millimeters. A bear walks $B = 10^6$ feet. A chicken walks $C = 10^8$ inches. What is the correct ordering of $A, B, C?$
(Note there are $25.4$ millimeters in an inch, and there are $12$ inches in a foot.)
$$
\mathrm a. ~ A<B<C\qquad \mathrm b.~A<C<B\qquad \mathrm c. ~C<B<A \qquad \mathrm d. ~B<A<C \qquad \mathrm e. ~B<C<A
$$
ABMC Online Contests, 2018 Dec
[b]p1.[/b] Fun facts! We know that $1008^2-1007^2 = 1008+1007$ and $1009^2-1008^2 = 1009+1008$. Now compute the following: $$1010^2 - 1009^2 - 1.$$
[b]p2.[/b] Let $m$ be the smallest positive multiple of $2018$ such that the fraction $m/2019$ can be simplified. What is the number $m$?
[b]p3.[/b] Given that $n$ satisfies the following equation $$n + 3n + 5n + 7n + 9n = 200,$$ find $n$.
[b]p4.[/b] Grace and Somya each have a collection of coins worth a dollar. Both Grace and Somya have quarters, dimes, nickels and pennies. Serena then observes that Grace has the least number of coins possible to make one dollar and Somya has the most number of coins possible. If Grace has $G$ coins and Somya has $S$ coins, what is $G + S$?
[b]p5.[/b] What is the ones digit of $2018^{2018}$?
[b]p6.[/b] Kaitlyn plays a number game. Each time when Kaitlyn has a number, if it is even, she divides it by $2$, and if it is odd, she multiplies it by $5$ and adds $1$. Kaitlyn then takes the resulting number and continues the process until she reaches $1$. For example, if she begins with $3$, she finds the sequence of $6$ numbers to be $$3, 3 \cdot 5 + 1 = 16, 16/2 = 8, 8/2 = 4, 4/2 = 2, 2/2 = 1.$$ If Kaitlyn's starting number is $51$, how many numbers are in her sequence, including the starting number and the number $1$?
[b]p7.[/b] Andrew likes both geometry and piano. His piano has $88$ keys, $x$ of which are white and $y$ of which are black. Each white key has area $3$ and each black key has area $11$. If the keys of his piano have combined area $880$, how many black keys does he have?
[b]p8.[/b] A six-sided die contains the numbers $1$, $2$, $3$, $4$, $5$, and $6$ on its faces. If numbers on opposite faces of a die always sum to $7$, how many distinct dice are possible? (Two dice are considered the same if one can be rotated to obtain the other.)
[b]p9.[/b] In $\vartriangle ABC$, $AB$ is $12$ and $AC$ is $15$. Alex draws the angle bisector of $BAC$, $AD$, such that $D$ is on $BC$. If $CD$ is $10$, then the area of $\vartriangle ABC$ can be expressed in the form $\frac{m \sqrt{n}}{p}$ where $m, p$ are relatively prime and $n$ is not divisible by the square of any prime. Find $m + n + p$.
[b]p10.[/b] Find the smallest positive integer that leaves a remainder of $2$ when divided by $5$, a remainder of $3$ when divided by $6$, a remainder of $4$ when divided by $7$, and a remainder of $5$ when divided by $8$.
[b]p11.[/b] Chris has a bag with $4$ marbles. Each minute, Chris randomly selects a marble out of the bag and flips a coin. If the coin comes up heads, Chris puts the marble back in the bag, while if the coin comes up tails, Chris sets the marble aside. What is the expected number of seconds it will take Chris to empty the bag?
[b]p12.[/b] A real fixed point $x$ of a function $f(x)$ is a real number such that $f(x) = x$. Find the absolute value of the product of the real fixed points of the function $f(x) = x^4 + x - 16$.
[b]p13.[/b] A triangle with angles $30^o$, $75^o$, $75^o$ is inscribed in a circle with radius $1$. The area of the triangle can be expressed as $\frac{a+\sqrt{b}}{c}$ where $b$ is not divisible by the square of any prime. Find $a + b + c$.
[b]p14.[/b] Dora and Charlotte are playing a game involving flipping coins. On a player's turn, she first chooses a probability of the coin landing heads between $\frac14$ and $\frac34$ , and the coin magically flips heads with that probability. The player then flips this coin until the coin lands heads, at which point her turn ends. The game ends the first time someone flips heads on an odd-numbered flip. The last player to flip the coin wins. If both players are playing optimally and Dora goes first, let the probability that Charlotte win the game be $\frac{a}{b}$ . Find $a \cdot b$.
[b]p15.[/b] Jonny is trying to sort a list of numbers in ascending order by swapping pairs of numbers. For example, if he has the list $1$, $4$, $3$, $2$, Jonny would swap $2$ and $4$ to obtain $1$, $2$, $3$, $4$. If Jonny is given a random list of $400$ distinct numbers, let $x$ be the expected minimum number of swaps he needs. Compute $\left \lfloor \frac{x}{20} \right \rfloor$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 Contests, 1
Find all the pairs of real numbers $(x,y)$ that are solutions of the system:
$(x^{2}+y^{2})^{2}-xy(x+y)^{2}=19 $
$| x - y | = 1$
MMPC Part II 1958 - 95, 1978
[b]p1.[/b] A rectangle $ABCD$ is cut from a piece of paper and folded along a straight line so that the diagonally opposite vertices $A$ and $C$ coincide. Find the length of the resulting crease in terms of the length ($\ell$) and width ($w$) of the rectangle. (Justify your answer.)
[b]p2.[/b] The residents of Andromeda use only bills of denominations $\$3 $and $\$5$ . All payments are made exactly, with no change given. What whole-dollar payments are not possible? (Justify your answer.)
[b]p3.[/b] A set consists of $21$ objects with (positive) weights $w_1, w_2, w_3, ..., w_{21}$ . Whenever any subset of $10$ objects is selected, then there is a subset consisting of either $10$ or $11$ of the remaining objects such that the two subsets have equal fotal weights. Find all possible weights for the objects. (Justify your answer.)
[b]p4.[/b] Let $P(x) = x^3 + x^2 - 1$ and $Q(x) = x^3 - x - 1$ . Given that $r$ and $s$ are two distinct solutions of $P(x) = 0$ , prove that $rs$ is a solution of $Q(x) = 0$
[b]p5.[/b] Given: $\vartriangle ABC$ with points $A_1$ and $A_2$ on $BC$ , $B_1$ and $B_2$ on $CA$, and $C_1$ and $C_2$ on $AB$.
$A_1 , A_2, B_1 , B_2$ are on a circle,
$B_1 , B_2, C_1 , C_2$ are on a circle, and
$C_1 , C_2, A_1 , A_2$ are on a circle.
The centers of these circles lie in the interior of the triangle.
Prove: All six points $A_1$ , $A_2$, $B_1$, $B_2$, $C_1$, $C_2$ are on a circle.
[img]https://cdn.artofproblemsolving.com/attachments/7/2/2b99ddf4f258232c910c062e4190d8617af6fa.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 Balkan MO Shortlist, A5
Let $a,b,c$ be positive real numbers, such that $(ab)^2 + (bc)^2 + (ca)^2 = 3$. Prove that
\[ (a^2 - a + 1)(b^2 - b + 1)(c^2 - c + 1) \ge 1. \]
[i]Proposed by Florin Stanescu (wer), România[/i]
2006 Spain Mathematical Olympiad, 1
Find all the functions $f:(0,+\infty) \to R $ that satisfy the equation
$$f(x)f(y)+f\big(\frac{\lambda}{x})f(\frac{\lambda}{y})=2f(xy)$$
for all pairs of $x,y$ real and positive numbers, where $\lambda$ is a positive real number such that $f(\lambda )=1$
2023 UMD Math Competition Part I, #15
What is the least positive integer $m$ such that the following is true?
[i]Given $\it m$ integers between $\it1$ and $\it{2023},$ inclusive, there must exist two of them $\it a, b$ such that $1 < \frac ab \le 2.$ [/i] \[\mathrm a. ~ 10\qquad \mathrm b.~11\qquad \mathrm c. ~12 \qquad \mathrm d. ~13 \qquad \mathrm e. ~1415\]
2006 Pre-Preparation Course Examination, 4
If $d\in \mathbb{Q}$, is there always an $\omega \in \mathbb{C}$ such that $\omega ^n=1$ for some $n\in \mathbb{N}$ and $\mathbb{Q}(\sqrt{d})\subseteq \mathbb{Q}(\omega)$?
1953 Moscow Mathematical Olympiad, 248
a) Solve the system $\begin{cases}
x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 = 1 \\
x_1 + 3x_2 + 4x_3 + 4x_4 + 4x_5 = 2 \\
x_1 + 3x_2 + 5x_3 + 6x_4 + 6x_5 = 3 \\
x_1 + 3x_2 + 5x_3 + 7x_4 + 8x_5 = 4 \\
x_1 + 3x_2 + 5x_3 + 7x_4 + 9x_5 = 5 \end{cases}$
b) Solve the system $\begin{cases}
x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 +...+ 2x_{100}= 1 \\
x_1 + 3x_2 + 4x_3 + 4x_4 + 4x_5 +...+ 4x_{100}= 2 \\
x_1 + 3x_2 + 5x_3 + 6x_4 + 6x_5 +...+ 6x_{100}= 3 \\
x_1 + 3x_2 + 5x_3 + 7x_4 + 8x_5 +...+ 8x_{100}= 4 \\
... \\
x_1 + 3x_2 + 5x_3 + 7x_4 + 9x_5 +...+ 199x_{100}= 100 \end{cases}$
2012 USA TSTST, 6
Positive real numbers $x, y, z$ satisfy $xyz+xy+yz+zx = x+y+z+1$. Prove that \[ \frac{1}{3} \left( \sqrt{\frac{1+x^2}{1+x}} + \sqrt{\frac{1+y^2}{1+y}} + \sqrt{\frac{1+z^2}{1+z}} \right) \le \left( \frac{x+y+z}{3} \right)^{5/8} . \]
2008 Austria Beginners' Competition, 2
Determine all real numbers $x$ satisfying $$x \lfloor x \lfloor x \rfloor \rfloor =\sqrt2.$$
2016 India Regional Mathematical Olympiad, 2
Let $a,b,c$ be positive real numbers such that $$\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=1.$$ Prove that $abc \le \frac{1}{8}$.
2004 Polish MO Finals, 2
Let $ P$ be a polynomial with integer coefficients such that there are two distinct integers at which $ P$ takes coprime values. Show that there exists an infinite set of integers, such that the values $ P$ takes at them are pairwise coprime.
2013 India PRMO, 7
Let Akbar and Birbal together have $n$ marbles, where $n > 0$.
Akbar says to Birbal, “ If I give you some marbles then you will have twice as many marbles as I will have.”
Birbal says to Akbar, “ If I give you some marbles then you will have thrice as many marbles as I will have.”
What is the minimum possible value of $n$ for which the above statements are true?
2021 Romania National Olympiad, 3
If $a,b,c>0,a+b+c=1$,then:
$\frac{1}{abc}+\frac{4}{a^{2}+b^{2}+c^{2}}\geq\frac{13}{ab+bc+ca}$
1982 AMC 12/AHSME, 27
Suppose $z=a+bi$ is a solution of the polynomial equation $c_4z^4+ic_3z^3+c_2z^2+ic_1z+c_0=0$, where $c_0$, $c_1$, $c_2$, $c_3$, $a$, and $b$ are real constants and $i^2=-1$. Which of the following must also be a solution?
$\textbf{(A) } -a-bi\qquad \textbf{(B) } a-bi\qquad \textbf{(C) } -a+bi\qquad \textbf{(D) }b+ai \qquad \textbf{(E) } \text{none of these}$
1997 Portugal MO, 1
A test has twenty questions. Seven points are awarded for each correct answer, two points are deducted for each incorrect answer and no points are awarded or deducted for each unanswered question. Joana obtained $87$ points. How many questions did she not answer?
2021 Science ON grade X, 1
Consider the complex numbers $x,y,z$ such that
$|x|=|y|=|z|=1$. Define the number
$$a=\left (1+\frac xy\right )\left (1+\frac yz\right )\left (1+\frac zx\right ).$$
$\textbf{(a)}$ Prove that $a$ is a real number.
$\textbf{(b)}$ Find the minimal and maximal value $a$ can achieve, when $x,y,z$ vary subject to $|x|=|y|=|z|=1$.
[i] (Stefan Bălăucă & Vlad Robu)[/i]
2014 Greece Team Selection Test, 2
Find all real non-zero polynomials satisfying $P(x)^3+3P(x)^2=P(x^{3})-3P(-x)$ for all $x\in\mathbb{R}$.
2014 District Olympiad, 1
Find the $x\in \mathbb{R}\setminus \mathbb{Q}$ such that \[ x^2+x\in \mathbb{Z}\text{ and }x^3+2x^2\in\mathbb{Z} \]
2016 India National Olympiad, P2
For positive real numbers $a,b,c$ which of the following statements necessarily implies $a=b=c$: (I) $a(b^3+c^3)=b(c^3+a^3)=c(a^3+b^3)$, (II) $a(a^3+b^3)=b(b^3+c^3)=c(c^3+a^3)$ ? Justify your answer.
1995 Abels Math Contest (Norwegian MO), 1a
Let a function $f$ satisfy $f(1) = 1$ and $f(1)+ f(2)+...+ f(n) = n^2f(n)$ for all $n \in N$. Determine $f(1995)$.
2008 Switzerland - Final Round, 10
Find all pairs$ (a, b)$ of positive real numbers with the following properties:
(i) For all positive real numbers $x, y, z,w$ holds $x + y^2 + z^3 + w^6 \ge a (xyzw)^{b}$ .
(ii) There is a quadruple $(x, y, z,w)$ of positive real numbers such that in equality (i) applies.
2019 Peru IMO TST, 5
Let $m$ and $n$ two given integers. Ana thinks of a pair of real numbers $x$, $y$ and then she tells Beto the values of $x^m+y^m$ and $x^n+y^n$, in this order. Beto's goal is to determine the value of $xy$ using that information. Find all values of $m$ and $n$ for which it is possible for Beto to fulfill his wish, whatever numbers that Ana had chosen.