Found problems: 15925
2009 Stanford Mathematics Tournament, 5
Compute $\int_{0}^{\infty} t^5e^{-t}dt$
2009 Romania National Olympiad, 4
We say that a natural number $ n\ge 4 $ is [i]unusual[/i] if, for any $ n\times n $ array of real numbers, the sum of the numbers from any $ 3\times 3 $ compact subarray is negative, and the sum of the numbers from any $ 4\times 4 $ compact subarray is positive.
Find all unusual numbers.
2019 Tuymaada Olympiad, 1
In a sequence $a_1, a_2, ..$ of real numbers the product $a_1a_2$ is negative, and to define $a_n$ for $n > 2$ one pair $(i, j)$ is chosen among all the pairs $(i, j), 1 \le i < j < n$, not chosen before, so that $a_i +a_j$ has minimum absolute value, and then $a_n$ is set equal to $a_i + a_j$ . Prove that $|a_i| < 1$ for some $i$.
2018 Math Hour Olympiad, 8-10
[u]Round 1[/u]
[b]p1.[/b] Five children, Aisha, Baesha, Cosha, Dasha, and Erisha, competed in running, jumping, and throwing. In each event, first place was won by someone from Renton, second place by someone from Seattle, and third place by someone from Tacoma. Aisha was last in running, Cosha was last in jumping, and Erisha was last in throwing. Could Baesha and Dasha be from the same city?
[b]p2.[/b] Fifty-five Brits and Italians met in a coffee shop, and each of them ordered either coffee or tea. Brits tell the truth when they drink tea and lie when they drink coffee; Italians do it the other way around. A reporter ran a quick survey:
Forty-four people answered “yes” to the question, “Are you drinking coffee?”
Thirty-three people answered “yes” to the question, “Are you Italian?”
Twenty-two people agreed with the statement, “It is raining outside.”
How many Brits in the coffee shop are drinking tea?
[b]p3.[/b] Doctor Strange is lost in a strange house with a large number of identical rooms, connected to each other in a loop. Each room has a light and a switch that could be turned on and off. The lights might initially be on in some rooms and off in others. How can Dr. Strange determine the number of rooms in the house if he is only allowed to switch lights on and off?
[b]p4.[/b] Fifty street artists are scheduled to give solo shows with three consecutive acts: juggling, drumming, and gymnastics, in that order. Each artist will spend equal time on each of the three activities, but the lengths may be different for different artists. At least one artist will be drumming at every moment from dawn to dusk. A new law was just passed that says two artists may not drum at the same time. Show that it is possible to cancel some of the artists' complete shows, without rescheduling the rest, so that at least one show is going on at every moment from dawn to dusk, and the schedule complies with the new law.
[b]p5.[/b] Alice and Bob split the numbers from $1$ to $12$ into two piles with six numbers in each pile. Alice lists the numbers in the first pile in increasing order as $a_1 < a_2 < a_3 < a_4 < a_5 < a_6$ and Bob lists the numbers in the second pile in decreasing order $b_1 > b_1 > b_3 > b_4 > b_5 > b_6$. Show that no matter how they split the numbers, $$|a_1 -b_1| + |a_2 -b_2| + |a_3 -b_3| + |a_4 -b_4| + |a_5 -b_5| + |a_6 -b_6| = 36.$$
[u]Round 2[/u]
[b]p6.[/b] The Martian alphabet has ? letters. Marvin writes down a word and notices that within every sub-word (a contiguous stretch of letters) at least one letter occurs an odd number of times. What is the length of the longest possible word he could have written?
[b]p7.[/b] For a long space journey, two astronauts with compatible personalities are to be selected from $24$ candidates. To find a good fit, each candidate was asked $24$ questions that required a simple yes or no answer. Two astronauts are compatible if exactly $12$ of their answers matched (that is, both answered yes or both answered no). Miraculously, every pair of these $24$ astronauts was compatible! Show that there were exactly $12$ astronauts whose answer to the question “Can you repair a flux capacitor?” was exactly the same as their answer to the question “Are you afraid of heights?” (that is, yes to both or no to both).
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2010 District Olympiad, 4
Determine all the functions $ f: \mathbb{N}\rightarrow \mathbb{N}$ such that
\[ f(n)\plus{}f(n\plus{}1)\plus{}f(f(n))\equal{}3n\plus{}1, \quad \forall n\in \mathbb{N}.\]
2020 Moldova EGMO TST, 3
Let the sequence $a_n$, $n\geq2$, $a_n=\frac{\sqrt[3]{n^3+n^2-n-1}}{n} $. Find the greatest natural number $k$ ,such that
$a_2 \cdot a_3 \cdot . . .\cdot a_k <8$
2019 India Regional Mathematical Olympiad, 3
Find all triples of non-negative real numbers $(a,b,c)$ which satisfy the following set of equations
$$a^2+ab=c$$
$$b^2+bc=a$$
$$c^2+ca=b$$
2024 Regional Competition For Advanced Students, 1
Let $a$, $b$ and $c$ be real numbers larger than $1$. Prove the inequality $$\frac{ab}{c-1}+\frac{bc}{a - 1}+\frac{ca}{b -1} \ge 12.$$
When does equality hold?
[i](Karl Czakler)[/i]
2021-IMOC qualification, A2
Find all functions $f:R \to R$, such that $f(x)+f(y)=f(x+y)$, and there exists non-constant polynomials $P(x)$, $Q(x)$ such that $P(x)f(Q(x))=f(P(x)Q(x))$
1998 German National Olympiad, 4
Let $a$ be a positive real number. Then prove that the polynomial
\[ p(x)=a^3x^3+a^2x^2+ax+a \]
has integer roots if and only if $a=1$ and determine those roots.
2024 ELMO Shortlist, A4
The number $2024$ is written on a blackboard. Each second, if there exist positive integers $a,b,k$ such that $a^k+b^k$ is written on the blackboard, you may write $a^{k'}+b^{k'}$ on the blackboard for any positive integer $k'.$ Find all positive integers that you can eventually write on the blackboard.
[i]Srinivas Arun[/i]
2015 Chile TST Ibero, 4
Let $x, y \in \mathbb{R}^+$. Prove that:
\[
\left( 1 + \frac{1}{x} \right) \left( 1 + \frac{1}{y} \right) \geq \left( 1 + \frac{2}{x + y} \right)^2.
\]
2010 ELMO Shortlist, 2
Given a prime $p$, show that \[\left(1+p\sum_{k=1}^{p-1}k^{-1}\right)^2 \equiv 1-p^2\sum_{k=1}^{p-1}k^{-2} \pmod{p^4}.\]
[i]Timothy Chu.[/i]
2014 CHMMC (Fall), 4
Let $b_1 = 1$ and $ b_{n+1} = 1 + \frac{1}{n(n+1)b_1b_2...b_n}$ for $n \ge 1$. Find $b_12$.
2016 IFYM, Sozopol, 8
Let $a_i$, $i=1,2,…2016$, be fixed natural numbers. Prove that there exist infinitely many 2016-tuples $x_1,x_2…x_{2016}$ of natural numbers, for which the sum
$\sum_{i=1}^{2016}{a_i x_i^i}$
is a 2017-th power of a natural number.
Math Hour Olympiad, Grades 5-7, 2010.67
[u]Round 1[/u]
[b]p1.[/b] Is it possible to draw some number of diagonals in a convex hexagon so that every diagonal crosses EXACTLY three others in the interior of the hexagon? (Diagonals that touch at one of the corners of the hexagon DO NOT count as crossing.)
[b]p2.[/b] A $ 3\times 3$ square grid is filled with positive numbers so that
(a) the product of the numbers in every row is $1$,
(b) the product of the numbers in every column is $1$,
(c) the product of the numbers in any of the four $2\times 2$ squares is $2$.
What is the middle number in the grid? Find all possible answers and show that there are no others.
[b]p3.[/b] Each letter in $HAGRID$'s name represents a distinct digit between $0$ and $9$. Show that
$$HAGRID \times H \times A\times G\times R\times I\times D$$
is divisible by $3$. (For example, if $H=1$, $A=2$, $G=3$, $R = 4$, $I = 5$, $D = 64$, then $HAGRID \times H \times A\times G\times R\times I\times D= 123456\times 1\times2\times3\times4\times5\times 6$).
[b]p4.[/b] You walk into a room and find five boxes sitting on a table. Each box contains some number of coins, and you can see how many coins are in each box. In the corner of the room, there is a large pile of coins. You can take two coins at a time from the pile and place them in different boxes. If you can add coins to boxes in this way as many times as you like, can you guarantee that each box on the table will eventually contain the same number of coins?
[b]p5.[/b] Alex, Bob and Chad are playing a table tennis tournament. During each game, two boys are playing each other and one is resting. In the next game the boy who lost a game goes to rest, and the boy who was resting plays the winner. By the end of tournament, Alex played a total of $10$ games, Bob played $15$ games, and Chad played $17$ games. Who lost the second game?
[u]Round 2[/u]
[b]p6.[/b] After going for a swim in his vault of gold coins, Scrooge McDuck decides he wants to try to arrange some of his gold coins on a table so that every coin he places on the table touches exactly three others. Can he possibly do this? You need to justify your answer. (Assume the gold coins are circular, and that they all have the same size. Coins must be laid at on the table, and no two of them can overlap.)
[b]p7.[/b] You have a deck of $50$ cards, each of which is labeled with a number between $1$ and $25$. In the deck, there are exactly two cards with each label. The cards are shuffled and dealt to $25$ students who are sitting at a round table, and each student receives two cards. The students will now play a game. On every move of the game, each student takes the card with the smaller number out of his or her hand and passes it to the person on his/her right. Each student makes this move at the same time so that everyone always has exactly two cards. The game continues until some student has a pair of cards with the same number. Show that this game will eventually end.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
MathLinks Contest 6th, 1.3
[i]Introductory part [/i]
We call an $n$-tuple $x = (x_1, x_2, ... , x_n)$, with $x_k \in R$ (or respectively with all $x_k \in Z$) a real vector (or respectively an integer vector). The set of all real vectors (respectively all integer vectors) is usually denoted by $R^n$ (respectively $Z^n$).
A vector $x$ is null if and only if $x_k = 0$, for all $k \in \{1, 2,... , n\}$. Also let $U_n$ be the set of all real vectors $x = (x_1, x_2, ... , x_n)$, such that $x^2_1 + x^2_2 + ...+ x^2_n = 1$.
For two vectors $x = (x_1, ... , x_n), y = (y_1, ..., y_n)$ we define the scalar product as the real number $x\cdot y = x_1y_1 + x_2y_2 +...+ x_ny_n$. We define the norm of the vector $x$ as $||x|| =\sqrt{x^2_1 + x^2_2 + ...+ x^2_n}$
[i]The problem[/i]
Let $A(k, r) = \{x \in U_n |$ for all $z \in Z^n$ we have either $|x \cdot z| \ge \frac{k}{||z||^r}$ or $z$ is null $\}$.
Prove that if $r > n - 1$ the we can find a positive number $k$ such that $A(k, r)$ is not empty, and if $r < n - 1$ we cannot find such a positive number $k$.
2024 Kyiv City MO Round 1, Problem 4
For real numbers $a_1, a_2, \ldots, a_{200}$, we consider the value $S = a_1a_2 + a_2a_3 + \ldots + a_{199}a_{200} + a_{200}a_1$. In one operation, you can change the sign of any number (that is, change $a_i$ to $-a_i$), and then calculate the value of $S$ for the new numbers again. What is the smallest number of operations needed to always be able to make $S$ nonnegative?
[i]Proposed by Oleksii Masalitin[/i]
KoMaL A Problems 2017/2018, A. 718
Let $\mathbb{R}[x,y]$ denote the set of two-variable polynomials with real coefficients. We say that the pair $(a,b)$ is a [i]zero[/i] of the polynomial $f \in \mathbb{R}[x,y]$ if $f(a,b)=0$.
If polynomials $p,q \in \mathbb{R}[x,y]$ have infinitely many common zeros, does it follow that there exists a non-constant polynomial $r \in \mathbb{R}[x,y]$ which is a factor of both $p$ and $q$?
2016 Bosnia And Herzegovina - Regional Olympiad, 1
Let $a_1=1$ and $a_{n+1}=a_{n}+\frac{1}{2a_n}$ for $n \geq 1$. Prove that
$a)$ $n \leq a_n^2 < n + \sqrt[3]{n}$
$b)$ $\lim_{n\to\infty} (a_n-\sqrt{n})=0$
1985 Poland - Second Round, 1
Inside the triangle $ABC$, the point $P$ is chosen. Let $ a, b, c $ be the lengths of the sides $ BC $, $ CA $, $ AB $, respectively, and $ x, y, z $ the distances of the point $ P $ from the vertices $ B, C, A $. Prove that if
$$ x^2 + xy + y^2 = a^2 $$
$$y^2 + yz + z^2 = b^2 $$
$$z^2 + zx + x^2 = c^2$$
this
$$ a^2 + ab + b^2 > c^2.$$
1987 Balkan MO, 2
Find all real numbers $x,y$ greater than $1$, satisfying the condition that the numbers $\sqrt{x-1}+\sqrt{y-1}$ and $\sqrt{x+1}+\sqrt{y+1}$ are nonconsecutive integers.
2018 China Team Selection Test, 1
Let $p,q$ be positive reals with sum 1. Show that for any $n$-tuple of reals $(y_1,y_2,...,y_n)$, there exists an $n$-tuple of reals $(x_1,x_2,...,x_n)$ satisfying $$p\cdot \max\{x_i,x_{i+1}\} + q\cdot \min\{x_i,x_{i+1}\} = y_i$$ for all $i=1,2,...,2017$, where $x_{2018}=x_1$.
2014 AMC 12/AHSME, 18
The domain of the function $f(x)=\log_{\frac12}(\log_4(\log_{\frac14}(\log_{16}(\log_{\frac1{16}}x))))$ is an interval of length $\tfrac mn$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$?
$\textbf{(A) }19\qquad
\textbf{(B) }31\qquad
\textbf{(C) }271\qquad
\textbf{(D) }319\qquad
\textbf{(E) }511\qquad$
2013 Iran MO (3rd Round), 2
Suppose that $a,b$ are two odd positive integers such that $2ab+1 \mid a^2 + b^2 + 1$. Prove that $a=b$.
(15 points)