This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2015 Postal Coaching, Problem 1

Let $f:\mathbb{N} \cup \{0\} \to \mathbb{N} \cup \{0\}$ be defined by $f(0)=0$, $$f(2n+1)=2f(n)$$ for $n \ge 0$ and $$f(2n)=2f(n)+1$$ for $n \ge 1$ If $g(n)=f(f(n))$, prove that $g(n-g(n))=0$ for all $n \ge 0$.

1967 Czech and Slovak Olympiad III A, 1

Find all triplets $(a,b,c)$ of complex numbers such that the equation \[x^4-ax^3-bx+c=0\] has $a,b,c$ as roots.

1977 Spain Mathematical Olympiad, 7

The numbers $A_1 , A_2 ,... , A_n$ are given. Prove, without calculating derivatives, that the value of $X$ that minimizes the sum $(X - A_1)^2 + (X -A_2)^2 + ...+ (X - A_n)^2$ is precisely the arithmetic mean of the given numbers.

1997 All-Russian Olympiad Regional Round, 11.8

For which $a$, there is a function $f: R \to R$, different from a constant, such that $$f(a(x + y)) = f(x) + f(y) ?$$

2022 IMO Shortlist, A1

Tags: sequence , algebra
Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers with the property that $$(a_{n+1})^2 + a_na_{n+2} \leq a_n + a_{n+2}$$ for all positive integers $n$. Show that $a_{2022}\leq 1$.

2005 Harvard-MIT Mathematics Tournament, 10

Find the sum of the absolute values of the roots of $x^4 - 4x^3 - 4x^2 + 16x - 8 = 0$.

2016 District Olympiad, 3

Find the continuous functions $ f:\mathbb{R}\longrightarrow\mathbb{R} $ having the following property: $$ f\left( x+\frac{1}{n}\right) \le f(x) +\frac{1}{n},\quad\forall n\in\mathbb{Z}^* ,\quad\forall x\in\mathbb{R} . $$

2022 Baltic Way, 2

Tags: algebra
We define a sequence of natural numbers by the initial values $a_0 = a_1 = a_2 = 1$ and the recursion $$ a_n = \bigg \lfloor \frac{n}{a_{n-1}a_{n-2}a_{n-3}} \bigg \rfloor $$ for all $n \ge 3$. Find the value of $a_{2022}$.

2018 Harvard-MIT Mathematics Tournament, 10

Let $S$ be a randomly chosen $6$-element subset of the set $\{0,1,2,\ldots,n\}.$ Consider the polynomial $P(x)=\sum_{i\in S}x^i.$ Let $X_n$ be the probability that $P(x)$ is divisible by some nonconstant polynomial $Q(x)$ of degree at most $3$ with integer coefficients satisfying $Q(0) \neq 0.$ Find the limit of $X_n$ as $n$ goes to infinity.

2019 Canadian Mathematical Olympiad Qualification, 3

Tags: root , polynomial , algebra
Let $f(x) = x^3 + 3x^2 - 1$ have roots $a,b,c$. (a) Find the value of $a^3 + b^3 + c^3$ (b) Find all possible values of $a^2b + b^2c + c^2a$

2021 Honduras National Mathematical Olympiad, Problem 2

Tags: algebra
Let $a,b,c,d$ be real numbers such that $a^2+b^2=1,c^2+d^2=1$ and $ac+bd=0$. Determine all possible values of $ab+cd$.

1998 Romania National Olympiad, 2

Let $P(x) = a_{1998}X^{1998} + a_{1997}X^{1997} +...+a_1X + a_0$ be a polynomial with real coefficients such that $P(0) \ne P (-1)$, and let $a, b$ be real numbers. Let $Q(x) = b_{1998}X^{1998} + b_{1997}X^{1997} +...+b_1X + b_0$ be the polynomial with real coefficients obtained by taking $b_k = aa_k + b$ ,$\forall k = 0, 1,2,..., 1998$. Show that if $Q(0) = Q (-1) \ne 0$ , then the polynomial $Q$ has no real roots.

1974 Polish MO Finals, 3

Let $r$ be a natural number. Prove that the quadratic trinomial $x^2 - rx- 1$ does not divide any nonzero polynomial whose coefficients are integers with absolute values less than $r$.

1976 IMO Longlists, 9

Tags: algebra
Find all (real) solutions of the system \[3x_1-x_2-x_3-x_5 = 0,\]\[-x_1+3x_2-x_4-x_6= 0,\]\[-x_1 + 3x_3 - x_4 - x_7 = 0,\]\[-x_2 - x_3 + 3x_4 - x_8 = 0,\]\[-x_1 + 3x_5 - x_6 - x_7 = 0,\]\[-x_2 - x_5 + 3x_6 - x_8 = 0,\]\[-x_3 - x_5 + 3x_7 - x_8 = 0,\]\[-x_4 - x_6 - x_7 + 3x_8 = 0.\]

1997 Israel National Olympiad, 4

Let $f : [0,1] \to [0,1]$ be a continuous, strictly increasing function such that $f(0) = 0$ and $f(1) = 1$. Prove that $$f\left(\frac{1}{10}\right) + f\left(\frac{2}{10}\right) +...+f\left(\frac{9}{10}\right) +f^{-1}\left(\frac{1}{10}\right) +...+f^{-1}\left(\frac{9}{10}\right) \le \frac{99}{10}$$

2010 Romania Team Selection Test, 1

A nonconstant polynomial $f$ with integral coefficients has the property that, for each prime $p$, there exist a prime $q$ and a positive integer $m$ such that $f(p) = q^m$. Prove that $f = X^n$ for some positive integer $n$. [i]AMM Magazine[/i]

2017 Federal Competition For Advanced Students, P2, 1

Let $\alpha$ be a fixed real number. Find all functions $f:\mathbb R \to \mathbb R$ such that $$f(f(x + y)f(x - y)) = x^2 + \alpha yf(y)$$for all $x,y \in \mathbb R$. [i]Proposed by Walther Janous[/i]

2012 Estonia Team Selection Test, 5

Let $x, y, z$ be positive real numbers whose sum is $2012$. Find the maximum value of $$ \frac{(x^2 + y^2 + z^2)(x^3 + y^3 + z^3)}{(x^4 + y^4 + z^4)}$$

2022 Thailand TST, 1

For each integer $n\ge 1,$ compute the smallest possible value of \[\sum_{k=1}^{n}\left\lfloor\frac{a_k}{k}\right\rfloor\] over all permutations $(a_1,\dots,a_n)$ of $\{1,\dots,n\}.$ [i]Proposed by Shahjalal Shohag, Bangladesh[/i]

2006 MOP Homework, 4

Assume that $f : [0,1)\to R$ is a function such that $f(x)-x^3$ and $f(x)-3x$ are both increasing functions. Determine if $f(x)-x^2-x$ is also an increasing function.

1988 Greece National Olympiad, 1

Find all functions $f: \mathbb{R}\to\mathbb{R}$ that satidfy : $$2f(x+y+xy)= a f(x)+ bf(y)+f(xy)$$ for any $x,y \in\mathbb{R}$ όπου $a,b\in\mathbb{R}$ with $a^2-a\ne b^2-b$

2016 Nigerian Senior MO Round 2, Problem 1

Let $a, b, c, x, y$ and $z$ be complex numbers such that $a=\frac{b+c}{x-2}, b=\frac{c+a}{y-2}, c=\frac{a+b}{z-2}$. If $xy+yz+zx=1000$ and $x+y+z=2016$, find the value of $xyz$.

2009 Estonia Team Selection Test, 1

For arbitrary pairwise distinct positive real numbers $a, b, c$, prove the inequality $$\frac{(a^2- b^2)^3 + (b^2-c^2)^3+(c^2-a^2)^3}{(a- b)^3 + (b-c)^3+(c-a)^3}> 8abc$$

TNO 2008 Senior, 9

Let $f: \mathbb{N} \to \mathbb{N}$ be a function that satisfies: \[ f(1) = 2008, \] \[ f(4n^2) = 4f(n^2), \] \[ f(4n^2 + 2) = 4f(n^2) + 3, \] \[ f(4n(n+1)) = 4f(n(n+1)) + 1, \] \[ f(4n(n+1) + 3) = 4f(n(n+1)) + 4. \] Determine whether there exists a natural number $m$ such that: \[ 1^2 + 2^2 + \dots + m^2 + f(1^2) + \dots + f(m^2) = 2008m + 251. \]

2016 India Regional Mathematical Olympiad, 8

At some integer points a polynomial with integer coefficients take values $1, 2$ and $3$. Prove that there exist not more than one integer at which the polynomial is equal to $5$.