Found problems: 15925
1978 Bundeswettbewerb Mathematik, 1
Let $a, b, c$ be sides of a triangle. Prove that
$$\frac{1}{3} \leq \frac{a^2 +b^2 +c^2 }{(a+b+c)^2 } < \frac{1}{2}$$
and show that $\frac{1}{2}$ cannot be replaced with a smaller number.
V Soros Olympiad 1998 - 99 (Russia), 11.9
It is known that unequal numbers $a$,$b$ and $c$ are successive members of an arithmetic progression, all of them are greater than $1000$ and all are squares of natural numbers. Find the smallest possible value of $b$.
2015 India IMO Training Camp, 2
Let $f$ and $g$ be two polynomials with integer coefficients such that the leading coefficients of both the polynomials are positive. Suppose $\deg(f)$ is odd and the sets $\{f(a)\mid a\in \mathbb{Z}\}$ and $\{g(a)\mid a\in \mathbb{Z}\}$ are the same. Prove that there exists an integer $k$ such that $g(x)=f(x+k)$.
2005 AMC 8, 22
A company sells detergent in three different sized boxes: small (S), medium (M) and large (L). The medium size costs $50\%$ more than the small size and contains $20\%$ less detergent than the large size. The large size contains twice as much detergent as the small size and costs $30\%$ more than the medium size. Rank the three sizes from best to worst buy.
$ \textbf{(A)}\ \text{SML}\qquad\textbf{(B)}\ \text{LMS}\qquad\textbf{(C)}\ \text{MSL}\qquad\textbf{(D)}\ \text{LSM}\qquad\textbf{(E)}\ \text{MLS} $
1967 Putnam, A3
Consider polynomial functions $ax^2 -bx +c$ with integer coefficients which have two distinct zeros in the open interval $(0,1).$ Exhibit with proof the least positive integer value of $a$ for which such a polynomial exists.
1990 ITAMO, 4
Let $a,b,c$ be side lengths of a triangle with $a+b+c = 1$. Prove that $a^2 +b^2 +c^2 +4abc \le \frac12$ .
2009 Ukraine National Mathematical Olympiad, 1
Solve the system of equations
\[\{\begin{array}{cc}x^3=2y^3+y-2\\ \text{ } \\ y^3=2z^3+z-2 \\ \text{ } \\ z^3 = 2x^3 +x -2\end{array}\]
2022 SG Originals, Q5
Let $n\ge 2$ be a positive integer. For any integer $a$, let $P_a(x)$ denote the polynomial $x^n+ax$. Let $p$ be a prime number and define the set $S_a$ as the set of residues mod $p$ that $P_a(x)$ attains. That is, $$S_a=\{b\mid 0\le b\le p-1,\text{ and there is }c\text{ such that }P_a(c)\equiv b \pmod{p}\}.$$Show that the expression $\frac{1}{p-1}\sum\limits_{a=1}^{p-1}|S_a|$ is an integer.
[i]Proposed by fattypiggy123[/i]
2012 ELMO Problems, 4
Let $a_0,b_0$ be positive integers, and define $a_{i+1}=a_i+\lfloor\sqrt{b_i}\rfloor$ and $b_{i+1}=b_i+\lfloor\sqrt{a_i}\rfloor$ for all $i\ge0$. Show that there exists a positive integer $n$ such that $a_n=b_n$.
[i]David Yang.[/i]
2023 Malaysian IMO Training Camp, 4
Given $n$ positive real numbers $x_1,x_2,x_3,...,x_n$ such that
$$\left (1+\frac{1}{x_1}\right )\left(1+\frac{1}{x_2}\right)...\left(1+\frac{1}{x_n}\right)=(n+1)^n$$
Determine the minimum value of $x_1+x_2+x_3+...+x_n$.
[i]Proposed by Loh Kwong Weng[/i]
2010 Indonesia TST, 3
Determine all real numbers $ a$ such that there is a function $ f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying \[ x\plus{}f(y)\equal{}af(y\plus{}f(x))\] for all real numbers $ x$ and $ y$.
[i]Hery Susanto, Malang[/i]
MOAA Team Rounds, TO5
For a real number $x$, the minimum value of the expression $$\frac{2x^2 + x - 3}{x^2 - 2x + 3}$$ can be written in the form $\frac{a-\sqrt{b}}{c}$, where $a, b$, and $c$ are positive integers such that $a$ and $c$ are relatively prime. Find $a + b + c$
2023 Macedonian Team Selection Test, Problem 3
Let $f:\mathbb{N} \rightarrow \mathbb{N}$ be a monotonically increasing function over the natural numbers, such that $f(f(n))=n^{2}$. What is the smallest, and what is the largest value that $f(2023)$ can take?
[i]Proposed by Ilija Jovcheski[/i]
2014 Mid-Michigan MO, 7-9
[b]p1.[/b] (a) Put the numbers $1$ to $6$ on the circle in such way that for any five consecutive numbers the sum of first three (clockwise) is larger than the sum of remaining two.
(b) Can you arrange these numbers so it works both clockwise and counterclockwise.
[b]p2.[/b] A girl has a box with $1000$ candies. Outside the box there is an infinite number of chocolates and muffins. A girl may replace:
$\bullet$ two candies in the box with one chocolate bar,
$\bullet$ two muffins in the box with one chocolate bar,
$\bullet$ two chocolate bars in the box with one candy and one muffin,
$\bullet$ one candy and one chocolate bar in the box with one muffin,
$\bullet$ one muffin and one chocolate bar in the box with one candy.
Is it possible that after some time it remains only one object in the box?
[b]p3.[/b] Find any integer solution of the puzzle: $WE+ST+RO+NG=128$ (different letters mean different digits between $1$ and $9$).
[b]p4.[/b] Two consecutive three‐digit positive integer numbers are written one after the other one. Show that the six‐digit number that is obtained is not divisible by $1001$.
[b]p5.[/b] There are $9$ straight lines drawn in the plane. Some of them are parallel some of them intersect each other. No three lines do intersect at one point. Is it possible to have exactly $17$ intersection points?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2002 Regional Competition For Advanced Students, 4
Let $a_0, a_1, ..., a_{2002}$ be real numbers.
a) Show that the smallest of the values $a_k (1-a_{2002-k})$ ($0 \le k \le 2002$) the following applies:
it is smaller or equal to $1/4$.
b) Does this statement always apply to the smallest of the values $a_k (1-a_{2003-k})$ ($1 \le k \le 2002$) ?
c) Show for positive real numbers $a_0, a_1, ..., a_{2002}$ :
the smallest of the values $a_k (1-a_{2003-k})$ ($1 \le k \le 2002$) is less than or equal to $1/4$.
2003 Federal Competition For Advanced Students, Part 1, 3
Given a positive real number $t$, find the number of real solutions $a, b, c, d$ of the system
\[a(1 - b^2) = b(1 -c^2) = c(1 -d^2) = d(1 - a^2) = t.\]
2013 Pan African, 1
A positive integer $n$ is such that $n(n+2013)$ is a perfect square.
a) Show that $n$ cannot be prime.
b) Find a value of $n$ such that $n(n+2013)$ is a perfect square.
2007 Nicolae Coculescu, 2
Solve in the real numbers the equation $ \cos \left( \pi\log_3 (x+6) \right)\cdot \cos \left( \pi \log_3 (x-2) \right) =1. $
2015 Thailand TSTST, 1
Prove that the Fibonacci sequence $\{F_n\}^\infty_{n=1}$ defined by $F_1 = F_2 = 1$ and $F_{n+2} = F_{n+1}+F_n$ for all $n \geq 1$ is a divisibility sequence, that is, if $m\mid n$ then $F_m \mid F_n$ for all positive integers $m$ and $n$.
2018 Latvia Baltic Way TST, P4
Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a function that satisfies
$$\sqrt{2f(x)}-\sqrt{2f(x)-f(2x)}\ge 2$$
for all real $x$.
Prove for all real $x$:
[i](a)[/i] $f(x)\ge 4$;
[i](b)[/i] $f(x)\ge 7.$
2009 All-Russian Olympiad Regional Round, 11.1
Square trinomial $f(x)$ is such that the polynomial (f(x))^5 - f(x) has exactly three real roots. Find the ordinate of the vertex of the graph of this trinomial.
2018 China Team Selection Test, 6
Find all pairs of positive integers $(x, y)$ such that $(xy+1)(xy+x+2)$ be a perfect square .
2016 India PRMO, 2
Find the number of integer solutions of the equation
$x^{2016} + (2016! + 1!) x^{2015} + (2015! + 2!) x^{2014} + ... + (1! + 2016!) = 0$
2017 Greece Team Selection Test, 3
Find all fuctions $f,g:\mathbb{R}\rightarrow \mathbb{R}$ such that:
$f(x-3f(y))=xf(y)-yf(x)+g(x) \forall x,y\in\mathbb{R}$
and $g(1)=-8$
2017 Indonesia Juniors, day 1
p1. Find all real numbers $x$ that satisfy the inequality $$\frac{x^2-3}{x^2-1}+ \frac{x^2 + 5}{x^2 + 3} \ge \frac{x^2-5}{x^2-3}+\frac{x^2 + 3}{x^2 + 1}$$
p2. It is known that $m$ is a four-digit natural number with the same units and thousands digits. If $m$ is a square of an integer, find all possible numbers $m$.
p3. In the following figure, $\vartriangle ABP$ is an isosceles triangle, with $AB = BP$ and point $C$ on $BP$. Calculate the volume of the object obtained by rotating $ \vartriangle ABC$ around the line $AP$
[img]https://cdn.artofproblemsolving.com/attachments/c/a/65157e2d49d0d4f0f087f3732c75d96a49036d.png[/img]
p4. A class farewell event is attended by $10$ male students and $ 12$ female students. Homeroom teacher from the class provides six prizes to randomly selected students. Gifts that provided are one school bag, two novels, and three calculators. If the total students The number of male students who received prizes was equal to the total number of female students who received prizes. How many possible arrangements are there of the student who gets the prize?
p5. It is known that $S =\{1945, 1946, 1947, ..., 2016, 2017\}$. If $A = \{a, b, c, d, e\}$ a subset of $S$ where $a + b + c + d + e$ is divisible by $5$, find the number of possible $A$'s.