Found problems: 15925
2011 LMT, Team Round
[b]p1.[/b] Triangle $ABC$ has side lengths $AB = 3^2$ and $BC = 4^2$. Given that $\angle ABC$ is a right angle, determine the length of $AC$.
[b]p2.[/b] Suppose $m$ and $n$ are integers such that $m^2+n^2 = 65$. Find the largest possible value of $m-n$.
[b]p3.[/b] Six middle school students are sitting in a circle, facing inwards, and doing math problems. There is a stack of nine math problems. A random student picks up the stack and, beginning with himself and proceeding clockwise around the circle, gives one problem to each student in order until the pile is exhausted. Aditya falls asleep and is therefore not the student who picks up the pile, although he still receives problem(s) in turn. If every other student is equally likely to have picked up the stack of problems and Vishwesh is sitting directly to Aditya’s left, what is the probability that Vishwesh receives exactly two problems?
[b]p4.[/b] Paul bakes a pizza in $15$ minutes if he places it $2$ feet from the fire. The time the pizza takes to bake is directly proportional to the distance it is from the fire and the rate at which the pizza bakes is constant whenever the distance isn’t changed. Paul puts a pizza $2$ feet from the fire at $10:30$. Later, he makes another pizza, puts it $2$ feet away from the fire, and moves the first pizza to a distance of $3$ feet away from the fire instantly. If both pizzas finish baking at the same time, at what time are they both done?
[b]p5.[/b] You have $n$ coins that are each worth a distinct, positive integer amount of cents. To hitch a ride with Charon, you must pay some unspecified integer amount between $10$ and $20$ cents inclusive, and Charon wants exact change paid with exactly two coins. What is the least possible value of $n$ such that you can be certain of appeasing Charon?
[b]p6.[/b] Let $a, b$, and $c$ be positive integers such that $gcd(a, b)$, $gcd(b, c)$ and $gcd(c, a)$ are all greater than $1$, but $gcd(a, b, c) = 1$. Find the minimum possible value of $a + b + c$.
[b]p7.[/b] Let $ABC$ be a triangle inscribed in a circle with $AB = 7$, $AC = 9$, and $BC = 8$. Suppose $D$ is the midpoint of minor arc $BC$ and that $X$ is the intersection of $\overline{AD}$ and $\overline{BC}$. Find the length of $\overline{BX}$.
[b]p8.[/b] What are the last two digits of the simplified value of $1! + 3! + 5! + · · · + 2009! + 2011!$ ?
[b]p9.[/b] How many terms are in the simplified expansion of $(L + M + T)^{10}$ ?
[b]p10.[/b] Ben draws a circle of radius five at the origin, and draws a circle with radius $5$ centered at $(15, 0)$. What are all possible slopes for a line tangent to both of the circles?
PS. You had better use hide for answers.
1975 Vietnam National Olympiad, 2
Solve this equation
$\frac{y^{3}+m^{3}}{\left ( y+m \right )^{3}}+\frac{y^{3}+n^{3}}{\left ( y+n \right )^{3}}+\frac{y^{3}+p^{3}}{\left ( y+p \right )^{3}}-\frac{3}{2}+\frac{3}{2}.\frac{y-m}{y+m}.\frac{y-n}{y+n}.\frac{y-p}{y+p}=0$
2018 PUMaC Algebra B, 7
For $k \in \left \{ 0, 1, \ldots, 9 \right \},$ let $\epsilon_k \in \left \{-1, 1 \right \}$. If the minimum possible value of $\sum_{i = 1}^9 \sum_{j = 0}^{i -1} \epsilon_i \epsilon_j 2^{i + j}$ is $m$, find $|m|$.
2018 Abels Math Contest (Norwegian MO) Final, 3b
Find all real functions $f$ defined on the real numbers except zero, satisfying
$f(2019) = 1$ and $f(x)f(y)+ f\left(\frac{2019}{x}\right) f\left(\frac{2019}{y}\right) =2f(xy)$ for all $x,y \ne 0$
2016 BMT Spring, 10
Evaluate $$\sum^{\infty}_{k=0} \left( \frac{-1}{8}\right)^k {2k \choose k}$$
2003 Italy TST, 3
Let $p(x)$ be a polynomial with integer coefficients and let $n$ be an integer. Suppose that there is a positive integer $k$ for which $f^{(k)}(n) = n$, where $f^{(k)}(x)$ is the polynomial obtained as the composition of $k$ polynomials $f$. Prove that $p(p(n)) = n$.
2008 Hong kong National Olympiad, 2
Let $ n>4$ be a positive integer such that $ n$ is composite (not a prime) and divides $ \varphi (n) \sigma (n) \plus{}1$, where $ \varphi (n)$ is the Euler's totient function of $ n$ and $ \sigma (n)$ is the sum of the positive divisors of $ n$. Prove that $ n$ has at least three distinct prime factors.
2007 German National Olympiad, 1
Determine all real numbers $x$ such that for all positive integers $n$ the inequality $(1+x)^n \leq 1+(2^n -1)x$ is true.
Russian TST 2021, P2
A magician intends to perform the following trick. She announces a positive integer $n$, along with $2n$ real numbers $x_1 < \dots < x_{2n}$, to the audience. A member of the audience then secretly chooses a polynomial $P(x)$ of degree $n$ with real coefficients, computes the $2n$ values $P(x_1), \dots , P(x_{2n})$, and writes down these $2n$ values on the blackboard in non-decreasing order. After that the magician announces the secret polynomial to the audience. Can the magician find a strategy to perform such a trick?
2023 Kyiv City MO, Problem 2
You are given $n \geq 3$ distinct real numbers. Prove that one can choose either $3$ numbers with positive sum, or $2$ numbers with negative sum.
[i]Proposed by Mykhailo Shtandenko[/i]
2024 Chile TST Ibero., 2
A collection of regular polygons with sides of equal length is said to "fit" if, when arranged around a common vertex, they exactly complete the surrounding area of the point on the plane. For example, a square fits with two octagons. Determine all possible collections of regular polygons that fit.
2018 Dutch IMO TST, 4
Let $A$ be a set of functions $f : R\to R$.
For all $f_1, f_2 \in A$ there exists a $f_3 \in A$ such that $f_1(f_2(y) - x)+ 2x = f_3(x + y)$ for all $x, y \in R$.
Prove that for all $f \in A$, we have $f(x - f(x))= 0$ for all $x \in R$.
1987 ITAMO, 4
Given $I_0 = \{-1,1\}$, define $I_n$ recurrently as the set of solutions $x$ of the equations $x^2 -2xy+y^2- 4^n = 0$,
where $y$ ranges over all elements of $I_{n-1}$. Determine the union of the sets $I_n$ over all nonnegative integers $n$.
2011 ELMO Shortlist, 3
Let $N$ be a positive integer. Define a sequence $a_0,a_1,\ldots$ by $a_0=0$, $a_1=1$, and $a_{n+1}+a_{n-1}=a_n(2-1/N)$ for $n\ge1$. Prove that $a_n<\sqrt{N+1}$ for all $n$.
[i]Evan O'Dorney.[/i]
2007 Bulgarian Autumn Math Competition, Problem 12.3
Find all real numbers $r$, such that the inequality
\[r(ab+bc+ca)+(3-r)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 9\]
holds for any real $a,b,c>0$.
1993 Greece National Olympiad, 9
Two thousand points are given on a circle. Label one of the points 1. From this point, count 2 points in the clockwise direction and label this point 2. From the point labeled 2, count 3 points in the clockwise direction and label this point 3. (See figure.) Continue this process until the labels $1, 2, 3, \dots, 1993$ are all used. Some of the points on the circle will have more than one label and some points will not have a label. What is the smallest integer that labels the same point as 1993?
[asy]
int x=101, y=3*floor(x/4);
draw(Arc(origin, 1, 360*(y-3)/x, 360*(y+4)/x));
int i;
for(i=y-2; i<y+4; i=i+1) {
dot(dir(360*i/x));
}
label("3", dir(360*(y-2)/x), dir(360*(y-2)/x));
label("2", dir(360*(y+1)/x), dir(360*(y+1)/x));
label("1", dir(360*(y+3)/x), dir(360*(y+3)/x));[/asy]
2022 New Zealand MO, 2
Find all triples $(a, b, c) $ of real numbers such that $a^2 + b^2 + c^2 = 1$ and $a(2b - 2a - c) \ge \frac12$.
2009 Bosnia And Herzegovina - Regional Olympiad, 2
Find minimal value of $a \in \mathbb{R}$ such that system $$\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}=a-1$$ $$\sqrt{x+1}+\sqrt{y+1}+\sqrt{z+1}=a+1$$ has solution in set of real numbers
1956 Czech and Slovak Olympiad III A, 1
Find all $x,y\in\left(0,\frac{\pi}{2}\right)$ such that
\begin{align*}
\frac{\cos x}{\cos y}&=2\cos^2 y, \\
\frac{\sin x}{\sin y}&=2\sin^2 y.
\end{align*}
2013 Brazil Team Selection Test, 2
Determine all positive integers $n$ for which $\dfrac{n^2+1}{[\sqrt{n}]^2+2}$ is an integer. Here $[r]$ denotes the greatest integer less than or equal to $r$.
2021 Greece JBMO TST, 1
If positive reals $x,y$ are such that $2(x+y)=1+xy$, find the minimum value of expression $$A=x+\frac{1}{x}+y+\frac{1}{y}$$
2012 China Western Mathematical Olympiad, 2
Define a sequence $\{a_n\}$ by\[a_0=\frac{1}{2},\ a_{n+1}=a_{n}+\frac{a_{n}^2}{2012}, (n=0,\ 1,\ 2,\ \cdots),\] find integer $k$ such that $a_{k}<1<a_{k+1}.$
(September 29, 2012, Hohhot)
2020 Peru IMO TST, 4
Find all functions $\,f: {\mathbb{N}}\rightarrow {\mathbb{N}}\,$ such that\[f(a)^{bf(b^2)}\le a^{f(b)^3}\hspace{0.2in}\text{for all}\,a,b\in \mathbb{N}. \]
1997 IMO Shortlist, 26
For every integer $ n \geq 2$ determine the minimum value that the sum $ \sum^n_{i\equal{}0} a_i$ can take for nonnegative numbers $ a_0, a_1, \ldots, a_n$ satisfying the condition $ a_0 \equal{} 1,$ $ a_i \leq a_{i\plus{}1} \plus{} a_{i\plus{}2}$ for $ i \equal{} 0, \ldots, n \minus{} 2.$
1988 IMO Longlists, 28
Find a necessary and sufficient condition on the natural number $ n$ for the equation
\[ x^n \plus{} (2 \plus{} x)^n \plus{} (2 \minus{} x)^n \equal{} 0
\]
to have a integral root.