Found problems: 15925
2019 Philippine TST, 2
Find all functions $f : \mathbb{R} \to \mathbb{R}$ that satisfy the equation $$f(x^{2019} + y^{2019}) = x(f(x))^{2018} + y(f(y))^{2018}$$ for all real numbers $x$ and $y$.
2011 Czech and Slovak Olympiad III A, 6
Let $\mathbb{R}^+$ denote the set of positive real numbers. Find all functions $f:\mathbb{R}^+\to\mathbb{R}^+$ such that for any $x,y\in\mathbb{R}^+$, we have \[ f(x)f(y)=f(y)f\Big(xf(y)\Big)+\frac{1}{xy}.\]
2000 Federal Competition For Advanced Students, Part 2, 3
Find all real solutions to the equation
\[| | | | | | |x^2 -x - 1| - 3| - 5| - 7| - 9| - 11| - 13| = x^2 - 2x - 48.\]
2020 LMT Fall, B25
Emmy goes to buy radishes at the market. Radishes are sold in bundles of $3$ for $\$5$and bundles of $5$ for $\$7$. What is the least number of dollars Emmy needs to buy exactly $100$ radishes?
2015 Mathematical Talent Reward Programme, SAQ: P 6
In the following figure, the bigger wheel has circumference $12$m and the inscribed wheel has circumference $8 $m.
$P_{1}$ denotes a point on the bigger wheel and $P_{2}$ denotes a point on the smaller wheel. Initially $P_{1}$ and $P_{2}$ coincide as in the figure. Now we roll the wheels on a smooth surface and the smaller wheel also rolls in the bigger wheel smoothly. What distance does the bigger wheel have to roll so that the points will be together again?
2007 Bulgaria National Olympiad, 3
Find the least positive integer $n$ such that $\cos\frac{\pi}{n}$ cannot be written in the form $p+\sqrt{q}+\sqrt[3]{r}$ with $p,q,r\in\mathbb{Q}$.
[i]O. Mushkarov, N. Nikolov[/i]
[hide]No-one in the competition scored more than 2 points[/hide]
2019 Irish Math Olympiad, 4
Find the set of all quadruplets $(x,y, z,w)$ of non-zero real numbers which satisfy
$$1 +\frac{1}{x}+\frac{2(x + 1)}{xy}+\frac{3(x + 1)(y + 2)}{xyz}+\frac{4(x + 1)(y + 2)(z + 3)}{xyzw}= 0$$
2020 OMpD, 1
Determine all pairs of positive integers $(x, y)$ such that:
$$x^4 - 6x^2 + 1 = 7\cdot 2^y$$
2021 Ukraine National Mathematical Olympiad, 7
The sequence $a_1,a_2, ..., a_{2n}$ of integers is such that each number occurs in no more than $n$ times. Prove that there are two strictly increasing sequences of indices $b_1,b_2, ..., b_{n}$ and $c_1,c_2, ..., c_{n}$ are such that every positive integer from the set $\{1,2,...,2n\}$ occurs exactly in one of these two sequences, and for each $1\le i \le n$ is true the condition $a_{b_i} \ne a_{c_i}$
.
(Anton Trygub)
2018 Hanoi Open Mathematics Competitions, 8
Let $a,b, c$ be real numbers with $a+b+c = 2018$.
Suppose $x, y$, and $z$ are the distinct positive real numbers which are satisfied $a = x^2 - yz - 2018, b = y^2 - zx - 2018$ , and $c = z^2 - xy - 2018$.
Compute the value of the following expression $P = \frac{\sqrt{a^3 + b^3 + c^3 - 3abc}}{x^3 + y^3 + z^3 - 3xyz}$
2019 PUMaC Algebra B, 5
Let $Q$ be a quadratic polynomial. If the sum of the roots of $Q^{100}(x)$ (where $Q^i(x)$ is defined by $Q^1(x)=Q(x)$, $Q^i(x)=Q(Q^{i-1}(x))$ for integers $i\geq 2$) is $8$ and the sum of the roots of $Q$ is $S$, compute $|\log_2(S)|$.
2008 Princeton University Math Competition, A2
What is the polynomial of smallest degree that passes through $(-2, 2), (-1, 1), (0, 2),(1,-1)$, and $(2, 10)$?
VI Soros Olympiad 1999 - 2000 (Russia), 11.2
Find the sum of all possible products of natural numbers of the form $k_1k_2...k_{999}$, where in each product $ k_1 < k_2 < ... < k_{999} <1999$, and there are no $k_i$ and $k_j$ such that $k_i + k_j =1999$.
2002 Argentina National Olympiad, 6
Let $P_1,P_2,\ldots ,P_n$, be infinite arithmetic progressions of positive integers, of differences $d_1,d_2,\ldots ,d_n$, respectively. Prove that if every positive integer appears in at least one of the $n$ progressions then one of the differences $d_i$ divides the least common multiple of the remaining $n-1$ differences.
Note: $P_i=\left \{ a_i,a_i+d_i,a_i+2d_i,a_i+3d_i,a_i+4d_i,\cdots \right \}$ with $ a_i$ and $d_i$ positive integers.
2021 Stanford Mathematics Tournament, R9
[b]p33.[/b] Lines $\ell_1$ and $\ell_2$ have slopes $m_1$ and $m_2$ such that $0 < m_2 < m_1$. $\ell'_1$ and $\ell'_2$ are the reflections of $\ell_1$ and $\ell_2$ about the line $\ell_3$ defined by $y = x$. Let $A = \ell_1 \cap \ell_2 = (5, 4)$, $B = \ell_1 \cap \ell_3$, $C = \ell'_1 \cap \ell'_2$ and $D = \ell_2 \cap \ell_3$. If $\frac{4-5m_1}{-5-4m_1} = m_2$ and $\frac{(1+m^2_1)(1+m^2_2)}{(1-m_1)^2(1-m_2)^2} = 41$, compute the area of quadrilateral $ABCD$.
[b]p34.[/b] Suppose $S(m, n) = \sum^m_{i=1}(-1)^ii^n$. Compute the remainder when $S(2020, 4)$ is divided by $S(1010, 2)$.
[b]p35.[/b] Let $N$ be the number of ways to place the numbers $1, 2, ..., 12$ on a circle such that every pair of adjacent numbers has greatest common divisor $1$. What is $N/144$? (Arrangements that can be rotated to yield each other are the same).
[b]p36.[/b] Compute the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{{2n \choose 2}} =\frac{1}{{2 \choose 2}} - \frac{1}{{4 \choose 2}} +\frac{1}{{6 \choose 2}} -\frac{1}{{8 \choose 2}} -\frac{1}{{10 \choose 2}}+\frac{1}{{12 \choose 2}} +...$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1982 Austrian-Polish Competition, 9
Define $S_n=\sum_{j,k=1}^{n} \frac{1}{\sqrt{j^2+k^2}}$.
Find a positive constant $C$ such that the inequality $n\le S_n \le Cn$ holds for all $n \ge 3$.
(Note. The smaller $C$, the better the solution.)
2014 BMT Spring, 2
Find the smallest positive value of $x$ such that $x^3-9x^2+22x-16=0$.
Mid-Michigan MO, Grades 10-12, 2009
[b]p1.[/b] Compute the sum of sharp angles at all five nodes of the star below.
( [url=http://www.math.msu.edu/~mshapiro/NewOlympiad/Olymp2009/10_12_2009.pdf]figure missing[/url] )
[b]p2.[/b] Arrange the integers from $1$ to $15$ in a row so that the sum of any two consecutive numbers is a perfect square. In how many ways this can be done?
[b]p3.[/b] Prove that if $p$ and $q$ are prime numbers which are greater than $3$ then $p^2 -q^2$ is divisible by $ 24$.
[b]p4.[/b] A city in a country is called Large Northern if comparing to any other city of the country it is either larger or farther to the North (or both). Similarly, a city is called Small Southern. We know that in the country all cities are Large Northern city. Show that all the cities in this country are simultaneously Small Southern.
[b]p5.[/b] You have four tall and thin glasses of cylindrical form. Place on the flat table these four glasses in such a way that all distances between any pair of centers of the glasses' bottoms are equal.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1974 Chisinau City MO, 73
For the real numbers $a_1,...,a_n, b_1,...,b_m$ , the following relations hold:
1) $|a_i|= |b_j|=1$, $i=1,...,n$ ,$j=1,...,m$
2) $a_1\sqrt{2+a_2\sqrt{2+...+a_n\sqrt2}}=b_1\sqrt{2+b_2\sqrt{2+...+b_m\sqrt2}}$
Prove that $n = m$ and $a_i=b_i$ , $i=1,...,n$
2018 Baltic Way, 4
Find all functions $f:[0, \infty) \to [0,\infty)$, such that for any positive integer $n$ and and for any non-negative real numbers $x_1,x_2,\dotsc,x_n$
\[f(x_1^2+\dotsc+x_n^2)=f(x_1)^2+\dots+f(x_n)^2.\]
2023 Belarus - Iran Friendly Competition, 2
Find all strictly monotone functions $f : \mathbb{R} \to \mathbb{R}$ such that some polynomial $P(x, y)$
satisfies the equality
$$f(x + y) = P(f(x), f(y))$$
for all real numbers $x$ and $y$
1981 AMC 12/AHSME, 17
The function $f$ is not defined for $x=0$, but, for all non-zero real numbers $x$, $f(x)+2f\left( \frac1x \right)=3x$. The equation $f(x)=f(-x)$ is satisfied by
$\text{(A)} ~\text{exactly one real number}$
$\text{(B)}~\text{exactly two real numbers}$
$\text{(C)} ~\text{no real numbers}$
$\text{(D)} ~\text{infinitely many, but not all, non-zero real numbers}$
$\text{(E)} ~\text{all non-zero real numbers}$
2022 Moldova Team Selection Test, 5
The function $f:\mathbb{N} \rightarrow \mathbb{N}$ verifies:
$1) f(n+2)-2022 \cdot f(n+1)+2021 \cdot f(n)=0, \forall n \in \mathbb{N};$
$2) f(20^{22})=f(22^{20});$
$3) f(2021)=2022$.
Find all possible values of $f(2022)$.
2024 AMC 12/AHSME, 9
Let $M$ be the greatest integer such that both $M + 1213$ and $M + 3773$ are perfect squares. What is the units digit of $M$?
$
\textbf{(A) }1 \qquad
\textbf{(B) }2 \qquad
\textbf{(C) }3 \qquad
\textbf{(D) }6 \qquad
\textbf{(E) }8 \qquad
$
2024 Nigerian MO Round 3, Problem 1
Find the value of $$(2^{40}+12^{41}+23^{42}+67^{43}+87^{44})^{45!+46}\mod11$$ (variation but same answer)
[hide=Answer]3[/hide]