Found problems: 15925
2017 Azerbaijan BMO TST, 2
Find the smallest constant $C > 0$ for which the following statement holds: among any five positive real numbers $a_1,a_2,a_3,a_4,a_5$ (not necessarily distinct), one can always choose distinct subscripts $i,j,k,l$ such that
\[ \left| \frac{a_i}{a_j} - \frac {a_k}{a_l} \right| \le C. \]
EMCC Speed Rounds, 2011
[i]20 problems for 20 minutes.[/i]
[b]p1.[/b] Euclid eats $\frac17$ of a pie in $7$ seconds. Euler eats $\frac15$ of an identical pie in $10$ seconds. Who eats faster?
[b]p2.[/b] Given that $\pi = 3.1415926...$ , compute the circumference of a circle of radius 1. Express your answer as a decimal rounded to the nearest hundred thousandth (i.e. $1.234562$ and $1.234567$ would be rounded to $1.23456$ and $1.23457$, respectively).
[b]p3.[/b] Alice bikes to Wonderland, which is $6$ miles from her house. Her bicycle has two wheels, and she also keeps a spare tire with her. If each of the three tires must be used for the same number of miles, for how many miles will each tire be used?
[b]p4.[/b] Simplify $\frac{2010 \cdot 2010}{2011}$ to a mixed number. (For example, $2\frac12$ is a mixed number while $\frac52$ and $2.5$ are not.)
[b]p5.[/b] There are currently $175$ problems submitted for $EMC^2$. Chris has submitted $51$ of them. If nobody else submits any more problems, how many more problems must Chris submit so that he has submitted $\frac13$ of the problems?
[b]p6.[/b] As shown in the diagram below, points $D$ and $L$ are located on segment $AK$, with $D$ between $A$ and $L$, such that $\frac{AD}{DK}=\frac{1}{3}$ and $\frac{DL}{LK}=\frac{5}{9}$. What is $\frac{DL}{AK}$?
[img]https://cdn.artofproblemsolving.com/attachments/9/a/3f92bd33ffbe52a735158f7ebca79c4c360d30.png[/img]
[b]p7.[/b] Find the number of possible ways to order the letters $G, G, e, e, e$ such that two neighboring letters are never $G$ and $e$ in that order.
[b]p8.[/b] Find the number of odd composite integers between $0$ and $50$.
[b]p9.[/b] Bob tries to remember his $2$-digit extension number. He knows that the number is divisible by $5$ and that the first digit is odd. How many possibilities are there for this number?
[b]p10.[/b] Al walks $1$ mile due north, then $2$ miles due east, then $3$ miles due south, and then $4$ miles due west. How far, in miles, is he from his starting position? (Assume that the Earth is flat.)
[b]p11.[/b] When n is a positive integer, $n!$ denotes the product of the first $n$ positive integers; that is, $n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot n$. Given that $7! = 5040$, compute $8! + 9! + 10!$.
[b]p12.[/b] Sam's phone company charges him a per-minute charge as well as a connection fee (which is the same for every call) every time he makes a phone call. If Sam was charged $\$4.88$ for an $11$-minute call and $\$6.00$ for a $19$-minute call, how much would he be charged for a $15$-minute call?
[b]p13.[/b] For a positive integer $n$, let $s_n$ be the sum of the n smallest primes. Find the least $n$ such that $s_n$ is a perfect square (the square of an integer).
[b]p14.[/b] Find the remainder when $2011^{2011}$ is divided by $7$.
[b]p15.[/b] Let $a, b, c$, and $d$ be $4$ positive integers, each of which is less than $10$, and let $e$ be their least common multiple. Find the maximum possible value of $e$.
[b]p16.[/b] Evaluate $100 - 1 + 99 - 2 + 98 - 3 + ... + 52 - 49 + 51 - 50$.
[b]p17.[/b] There are $30$ basketball teams in the Phillips Exeter Dorm Basketball League. In how ways can $4$ teams be chosen for a tournament if the two teams Soule Internationals and Abbot United cannot be chosen at the same time?
[b]p18.[/b] The numbers $1, 2, 3, 4, 5, 6$ are randomly written around a circle. What is the probability that there are four neighboring numbers such that the sum of the middle two numbers is less than the sum of the other two?
[b]p19.[/b] What is the largest positive $2$-digit factor of $3^{2^{2011}} - 2^{2^{2011}}$?
[b]p20.[/b] Rhombus $ABCD$ has vertices $A = (-12,-4)$, $B = (6, b)$, $C = (c,-4)$ and $D = (d,-28)$, where $b$, $c$, and $d$ are integers. Find a constant $m$ such that the line y = $mx$ divides the rhombus into two regions of equal area.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 ELMO Shortlist, 1
Let $n$ be a positive integer. There are $n$ soldiers stationed on the $n$th root of unity in the complex plane. Each round, you pick a point, and all the soldiers shoot in a straight line towards that point; if their shot hits another soldier, the hit soldier dies and no longer shoots during the next round. What is the minimum number of rounds, in terms of $n$, required to eliminate all the soldiers?
[i]David Yang.[/i]
2020 ABMC, Speed
[i]25 problems for 30 minutes[/i]
[b]p1.[/b] Today is Saturday, April $25$, $2020$. What is the value of $6 + 4 + 25 + 2020$?
[b]p2.[/b] The figure below consists of a $2$ by $3$ grid of squares. How many squares of any size are in the grid?
$\begin{tabular}{|l|l|l|}
\hline
& & \\ \hline
& & \\ \hline
\end{tabular}$
[b]p3.[/b] James is playing a game. He first rolls a six-sided dice which contains a different number on each side, then randomly picks one of twelve dierent colors, and finally ips a quarter. How many different possible combinations of a number, a color and a flip are there in this game?
[b]p4.[/b] What is the sum of the number of diagonals and sides in a regular hexagon?
[b]p5.[/b] Mickey Mouse and Minnie Mouse are best friends but they often fight. Each of their fights take up exactly one hour, and they always fight on prime days. For example, they fight on January $2$nd, $3$rd, but not the $4$th. Knowing this, how many total times do Mickey and Minnie fight in the months of April, May and June?
[b]p6.[/b] Apple always loved eating watermelons. Normal watermelons have around $13$ black seeds and $25$ brown seeds, whereas strange watermelons had $45$ black seeds and $2$ brown seeds. If Apple bought $14$ normal watermelons and $7$ strange watermelons, then let $a$ be the total number of black seeds and $b$ be the total number of brown seeds. What is $a - b$?
[b]p7.[/b] Jerry and Justin both roll a die once. The probability that Jerry's roll is greater than Justin's can be expressed as a fraction in the form $\frac{m}{n}$ in simplified terms. What is $m + n$?
[b]p8.[/b] Taylor wants to color the sides of an octagon. What is the minimum number of colors Taylor will need so that no adjacent sides of the octagon will be filled in with the same color?
[b]p9.[/b] The point $\frac23$ of the way from ($-6, 8$) to ($-3, 5$) can be expressed as an ordered pair $(a, b)$. What is $|a - b|$?
[b]p10.[/b] Mary Price Maddox laughs $7$ times per class. If she teaches $4$ classes a day for the $5$ weekdays every week but doesn't laugh on Wednesdays, then how many times does she laugh after $5$ weeks of teaching?
[b]p11.[/b] Let $ABCD$ be a unit square. If $E$ is the midpoint of $AB$ and $F$ lies inside $ABCD$ such that $CFD$ is an equilateral triangle, the positive difference between the area of $CED$ and $CFD$ can be expressed in the form $\frac{a-\sqrt{b}}{c}$ , where $a$, $b$, $c$ are in lowest simplified terms. What is $a + b + c$?
[b]p12.[/b] Eddie has musician's syndrome. Whenever a song is a $C$, $A$, or $F$ minor, he begins to cry and his body becomes very stiff. On the other hand, if the song is in $G$ minor, $A$ at major, or $E$ at major, his eyes open wide and he feels like the happiest human being ever alive. There are a total of $24$ keys. How many different possibilities are there in which he cries while playing one song with two distinct keys?
[b]p13.[/b] What positive integer must be added to both the numerator and denominator of $\frac{12}{40}$ to make a fraction that is equivalent to $\frac{4}{11}$ ?
[b]p14.[/b] The number $0$ is written on the board. Each minute, Gene the genie either multiplies the number on the board by $3$ or $9$, each with equal probability, and then adds either $1$,$2$, or $3$, each with equal probability. Find the expected value of the number after $3$ minutes.
[b]p15.[/b] $x$ satisfies $\dfrac{1}{x+ \dfrac{1}{1+\frac{1}{2}}}=\dfrac{1}{2+ \dfrac{1}{1- \dfrac{1}{2+\frac{1}{2}}}}$
Find $x$.
[b]p16.[/b] How many different points in a coordinate plane can a bug end up on if the bug starts at the origin and moves one unit to the right, left, up or down every minute for $8$ minutes?
[b]p17.[/b] The triplets Addie, Allie, and Annie, are racing against the triplets Bobby, Billy, and Bonnie in a relay race on a track that is $100$ feet long. The first person of each team must run around the entire track twice and tag the second person for the second person to start running. Then, the second person must run once around the entire track and tag the third person, and finally, the third person would only have to run around half the track. Addie and Bob run first, Allie and Billy second, Annie and Bonnie third. Addie, Allie, and Annie run at $50$ feet per minute (ft/m), $25$ ft/m, and $20$ ft/m, respectively. If Bob, Billy, and Bonnie run half as fast as Addie, Allie, and Annie, respectively, then how many minutes will it take Bob, Billy, and Bonnie to finish the race. Assume that everyone runs at a constant rate.
[b]p18.[/b] James likes to play with Jane and Jason. If the probability that Jason and Jane play together is $\frac13$, while the probability that James and Jason is $\frac14$ and the probability that James and Jane play together is $\frac15$, then the probability that they all play together is $\frac{\sqrt{p}}{q}$ for positive integers $p$, $q$ where $p$ is not divisible by the square of any prime. Find $p + q$.
[b]p19.[/b] Call an integer a near-prime if it is one more than a prime number. Find the sum of all near-primes less than$ 1000$ that are perfect powers. (Note: a perfect power is an integer of the form $n^k$ where $n, k \ge 2$ are integers.)
[b]p20.[/b] What is the integer solution to $\sqrt{\frac{2x-6}{x-11}} = \frac{3x-7}{x+6}$ ?
[b]p21.[/b] Consider rectangle $ABCD$ with $AB = 12$ and $BC = 4$ with $F$,$G$ trisecting $DC$ so that $F$ is closer to $D$. Then $E$ is on $AB$. We call the intersection of $EF$ and $DB$ $X$, and the intersection of $EG$ and $DB$ is $Y$. If the area of $\vartriangle XY E$ is \frac{8}{15} , then what is the length of $EB$?
[b]p22.[/b] The sum $$\sum^{\infty}_{n=2} \frac{1}{4n^2-1}$$ can be expressed as a common fraction $\frac{a}{b}$ in lowest terms. Find $a + b$.
[b]p23.[/b] In square $ABCD$, $M$, $N$, $O$, $P$ are points on sides $\overline{AB}$, $\overline{BC}$, $\overline{CD}$ and $\overline{DA}$, respectively. If $AB = 4$, $AM = BM$ and $DP = 3AP$, the least possible value of $MN + NO + OP$ can be expressed as $\sqrt{x}$ forsome integer x. Find x:
[b]p24.[/b] Grand-Ovich the ant is at a vertex of a regular hexagon and he moves to one of the adjacent vertices every minute with equal probability. Let the probability that after $8$ minutes he will have returned to the starting vertex at least once be the common fraction $\frac{a}{b}$ in lowest terms. What is $a + b$?
[b]p25.[/b] Find the last two non-zero digits at the end of $2020!$ written as a two digit number.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2009 All-Russian Olympiad, 3
How many times changes the sign of the function \[ f(x)\equal{}\cos x\cos\frac{x}{2}\cos\frac{x}{3}\cdots\cos\frac{x}{2009}\] at the interval $ \left[0, \frac{2009\pi}{2}\right]$?
1986 IMO Longlists, 18
Provided the equation $xyz = p^n(x + y + z)$ where $p \geq 3$ is a prime and $n \in \mathbb{N}$. Prove that the equation has at least $3n + 3$ different solutions $(x,y,z)$ with natural numbers $x,y,z$ and $x < y < z$. Prove the same for $p > 3$ being an odd integer.
I Soros Olympiad 1994-95 (Rus + Ukr), 11.7
Write the equation of the line tangent to the graph of the function $y = x^4-x^2 + x$ to at least at two points.
2022 Purple Comet Problems, 15
Let $a$ be a real number such that $$5 \sin^4 \left( \frac{a}{2} \right)+ 12 \cos a = 5 cos^4 \left( \frac{a}{2} \right)+ 12 \sin a.$$ There are relatively prime positive integers $m$ and $n$ such that $\tan a = \frac{m}{n}$ . Find $10m + n$.
2019 Bosnia and Herzegovina EGMO TST, 1
Let $x_1,x_2, ..., x_n$ be non-negative real numbers. Solve the system of equations:
$$x_k+x_{k+1}=x^2_{k+2}\,\,,\,\,\, (k =1,2,...,n),$$
where $x_{n+1} = x_1$, $x_{n+2} = x_2$.
2011 Polish MO Finals, 3
Prove that it is impossible for polynomials $f_1(x),f_2(x),f_3(x),f_4(x)\in \mathbb{Q}[x]$ to satisfy \[f_1^2(x)+f_2^2(x)+f_3^2(x)+f_4^2(x) = x^2+7.\]
2021 Science ON grade VIII, 4
Consider positive real numbers $x,y,z$. Prove the inequality
$$\frac 1x+\frac 1y+\frac 1z+\frac{9}{x+y+z}\ge 3\left (\left (\frac{1}{2x+y}+\frac{1}{x+2y}\right )+\left (\frac{1}{2y+z}+\frac{1}{y+2z}\right )+\left (\frac{1}{2z+x}+\frac{1}{x+2z}\right )\right ).$$
[i] (Vlad Robu \& Sergiu Novac)[/i]
1977 Polish MO Finals, 1
A function $h : \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and satisfies $h(ax) = bh(x)$ for all $x$, where $a$ and $b$ are given positive numbers and $0 \not = |a| \not = 1$. Suppose that $h'(0) \not = 0$ and the function $h'$ is continuous at $x = 0$. Prove that $a = b$ and that there is a real number $c$ such that $h(x) = cx$ for all $x$.
2019 Baltic Way, 2
Let $(F_n)$ be the sequence defined recursively by $F_1=F_2=1$ and $F_{n+1}=F_n+F_{n-1}$ for $n\geq 2$. Find all pairs of positive integers $(x,y)$ such that
$$5F_x-3F_y=1.$$
1988 IMO Shortlist, 25
A positive integer is called a [b]double number[/b] if its decimal representation consists of a block of digits, not commencing with 0, followed immediately by an identical block. So, for instance, 360360 is a double number, but 36036 is not. Show that there are infinitely many double numbers which are perfect squares.
2003 All-Russian Olympiad, 1
Let $\alpha , \beta , \gamma , \delta$ be positive numbers such that for all $x$, $\sin{\alpha x}+\sin {\beta x}=\sin {\gamma x}+\sin {\delta x}$. Prove that $\alpha =\gamma$ or $\alpha=\delta$.
2020 Jozsef Wildt International Math Competition, W53
Define the sequence $(w_n)_{n\ge0}$ by the recurrence relation
$$w_{n+2}=2w_{n+1}+3w_n,\enspace\enspace w_0=1,w_1=i,\enspace n=0,1,\ldots$$
(1) Find the general formula for $w_n$ and compute the first $9$ terms.
(2) Show that $|\Re w_n-\Im w_n|=1$ for all $n\ge1$.
[i]Proposed by Ovidiu Bagdasar[/i]
1985 Miklós Schweitzer, 5
Let $F(x,y)$ and $G(x,y)$ be relatively prime homogeneous polynomials of degree at least one having integer coefficients. Prove that there exists a number $c$ depending only on the degrees and the maximum of the absolute values of the coefficients of $F$ and $G$ such that $F(x,y)\neq G(x,y)$ for any integers $x$ and $y$ that are relatively prime and satisfy $\max \{ |x|,|y|\} > c$. [K. Gyory]
2017 Canadian Mathematical Olympiad Qualification, 3
Determine all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the following equation for all $x, y \in \mathbb{R}$.
$$(x+y)f(x-y) = f(x^2-y^2).$$
1987 All Soviet Union Mathematical Olympiad, 452
The positive numbers $a,b,c,A,B,C$ satisfy a condition $$a + A = b + B = c + C = k$$ Prove that $$aB + bC + cA \le k^2$$
2004 Romania National Olympiad, 3
Let $n>2,n \in \mathbb{N}$ and $a>0,a \in \mathbb{R}$ such that $2^a + \log_2 a = n^2$. Prove that: \[ 2 \cdot \log_2 n>a>2 \cdot \log_2 n -\frac{1}{n} . \]
[i]Radu Gologan[/i]
2025 Harvard-MIT Mathematics Tournament, 7
There exists a unique triple $(a,b,c)$ of positive real numbers that satisfies the equations $$2(a^2+1)=3(b^2+1)=4(c^2+1) \quad \text{and} \quad ab+bc+ca=1.$$ Compute $a+b+c.$
2019 India PRMO, 16
A pen costs $\mathrm{Rs.}\, 13$ and a note book costs $\mathrm{Rs.}\, 17$. A school spends exactly $\mathrm{Rs.}\, 10000$ in the year $2017-18$ to buy $x$ pens and $y$ note books such that $x$ and $y$ are as close as possible (i.e., $|x-y|$ is minimum). Next year, in $2018-19$, the school spends a little more than $\mathrm{Rs.}\, 10000$ and buys $y$ pens and $x$ note books. How much [b]more[/b] did the school pay?
2014 Peru IMO TST, 15
Let $n$ be a positive integer, and consider a sequence $a_1 , a_2 , \dotsc , a_n $ of positive integers. Extend it periodically to an infinite sequence $a_1 , a_2 , \dotsc $ by defining $a_{n+i} = a_i $ for all $i \ge 1$. If \[a_1 \le a_2 \le \dots \le a_n \le a_1 +n \] and \[a_{a_i } \le n+i-1 \quad\text{for}\quad i=1,2,\dotsc, n, \] prove that \[a_1 + \dots +a_n \le n^2. \]
2000 Putnam, 2
Prove that there exist infinitely many integers $n$ such that $n$, $n+1$, $n+2$ are each the sum of the squares of two integers. [Example: $0=0^2+0^2$, $1=0^2+1^2$, $2=1^2+1^2$.]
1959 Polish MO Finals, 1
Prove that for any numbers $ a $ and $ b $ the inequality holds
$$
\frac{a+b}{2} \cdot \frac{a^2+b^2}{2} \cdot \frac{a^3+b^3}{2} \leq \frac{a^6+b^6}{2}.$$