Found problems: 15925
India EGMO 2022 TST, 6
Suppose $P(x)$ is a non-constant polynomial with real coefficients, and even degree. Bob writes the polynomial $P(x)$ on a board. At every step, if the polynomial on the board is $f(x)$, he can replace it with
1. $f(x)+c$ for a real number $c$, or
2. the polynomial $P(f(x))$.
Can he always find a finite sequence of steps so the final polynomial on the board has exactly $2020$ real roots? What about $2021$?
[i]~Sutanay Bhattacharya[/i]
2018 Korea Junior Math Olympiad, 1
Let $f$ be a quadratic function which satisfies the following condition. Find the value of $\frac{f(8)-f(2)}{f(2)-f(1)}$.
For two distinct real numbers $a,b$, if $f(a)=f(b)$, then $f(a^2-6b-1)=f(b^2+8)$.
2022 CMIMC, 2.5
Alan is assigning values to lattice points on the 3d coordinate plane. First, Alan computes the roots of the cubic $20x^3-22x^2+2x+1$ and finds that they are $\alpha$, $\beta$, and $\gamma$. He finds out that each of these roots satisfy $|\alpha|,|\beta|,|\gamma|\leq 1$ On each point $(x,y,z)$ where $x,y,$ and $z$ are all nonnegative integers, Alan writes down $\alpha^x\beta^y\gamma^z$. What is the value of the sum of all numbers he writes down?
[i]Proposed by Alan Abraham[/i]
2023 Malaysian Squad Selection Test, 3
A sequence of reals $a_1, a_2, \cdots$ satisfies for all $m>1$, $$a_{m+1}a_{m-1}=a_m^2-a_1^2$$ Prove that for all $m>n>1$, the sequence satisfies the equation $$a_{m+n}a_{m-n}=a_m^2-a_n^2$$
[i]Proposed by Ivan Chan Kai Chin[/i]
1998 IMO Shortlist, 1
Let $a_{1},a_{2},\ldots ,a_{n}$ be positive real numbers such that $a_{1}+a_{2}+\cdots +a_{n}<1$. Prove that
\[ \frac{a_{1} a_{2} \cdots a_{n} \left[ 1 - (a_{1} + a_{2} + \cdots + a_{n}) \right] }{(a_{1} + a_{2} + \cdots + a_{n})( 1 - a_{1})(1 - a_{2}) \cdots (1 - a_{n})} \leq \frac{1}{ n^{n+1}}. \]
2002 Turkey Team Selection Test, 1
If a function $f$ defined on all real numbers has at least two centers of symmetry, show that this function can be written as sum of a linear function and a periodic function.
[For every real number $x$, if there is a real number $a$ such that $f(a-x) + f(a+x) =2f(a)$, the point $(a,f(a))$ is called a center of symmetry of the function $f$.]
2015 India IMO Training Camp, 2
Find all functions from $\mathbb{N}\cup\{0\}\to\mathbb{N}\cup\{0\}$ such that $f(m^2+mf(n))=mf(m+n)$, for all $m,n\in \mathbb{N}\cup\{0\}$.
2022 Harvard-MIT Mathematics Tournament, 6
Let $P(x) = x^4 + ax^3 + bx^2 + x$ be a polynomial with four distinct roots that lie on a circle in the complex plane. Prove that $ab\ne 9$.
1987 IMO Longlists, 24
Prove that if the equation $x^4 + ax^3 + bx + c = 0$ has all its roots real, then $ab \leq 0.$
Russian TST 2016, P1
For which even natural numbers $d{}$ does there exists a constant $\lambda>0$ such that any reduced polynomial $f(x)$ of degree $d{}$ with integer coefficients that does not have real roots satisfies the inequality $f(x) > \lambda$ for all real numbers?
2018 Spain Mathematical Olympiad, 1
Find all positive integers $x$ such that $2x+1$ is a perfect square but none of the integers $2x+2, 2x+3, \ldots, 3x+2$ are perfect squares.
2017 CMIMC Algebra, 10
Let $c$ denote the largest possible real number such that there exists a nonconstant polynomial $P$ with \[P(z^2)=P(z-c)P(z+c)\] for all $z$. Compute the sum of all values of $P(\tfrac13)$ over all nonconstant polynomials $P$ satisfying the above constraint for this $c$.
LMT Guts Rounds, 2022 S
[u]Round 6[/u]
[b]p16.[/b] Given that $x$ and $y$ are positive real numbers such that $x^3+y = 20$, the maximum possible value of $x + y$ can be written as $\frac{a\sqrt{b}}{c}$ +d where $a$, $b$, $c$, and $d$ are positive integers such that $gcd(a,c) = 1$ and $b$ is square-free. Find $a +b +c +d$.
[b]p17.[/b] In $\vartriangle DRK$ , $DR = 13$, $DK = 14$, and $RK = 15$. Let $E$ be the intersection of the altitudes of $\vartriangle DRK$. Find the value of $\lfloor DE +RE +KE \rfloor$.
[b]p18.[/b] Subaru the frog lives on lily pad $1$. There is a line of lily pads, numbered $2$, $3$, $4$, $5$, $6$, and $7$. Every minute, Subaru jumps from his current lily pad to a lily pad whose number is either $1$ or $2$ greater, chosen at random from valid possibilities. There are alligators on lily pads $2$ and $5$. If Subaru lands on an alligator, he dies and time rewinds back to when he was on lily pad number $1$. Find the expected number of jumps it takes Subaru to reach pad $7$.
[u]Round 7[/u]
This set has problems whose answers depend on one another.
[b]p19.[/b] Let $B$ be the answer to Problem $20$ and let $C$ be the answer to Problem $21$. Given that $$f (x) = x^3-Bx-C = (x-r )(x-s)(x-t )$$ where $r$, $s$, and $t$ are complex numbers, find the value of $r^2+s^2+t^2$.
[b]p20.[/b] Let $A$ be the answer to Problem $19$ and let $C$ be the answer to Problem $21$. Circles $\omega_1$ and $\omega_2$ meet at points $X$ and $Y$ . Let point $P \ne Y$ be the point on $\omega_1$ such that $PY$ is tangent to $\omega_2$, and let point $Q \ne Y$ be the point on $\omega_2$ such that $QY$ is tangent to $\omega_1$. Given that $PX = A$ and $QX =C$, find $XY$ .
[b]p21.[/b] Let $A$ be the answer to Problem $19$ and let $B$ be the answer to Problem $20$. Given that the positive difference between the number of positive integer factors of $A^B$ and the number of positive integer factors of $B^A$ is $D$, and given that the answer to this problem is an odd prime, find $\frac{D}{B}-40$.
[u]Round 8[/u]
[b]p22.[/b] Let $v_p (n)$ for a prime $p$ and positive integer $n$ output the greatest nonnegative integer $x$ such that $p^x$ divides $n$. Find $$\sum^{50}_{i=1}\sum^{i}_{p=1} { v_p (i )+1 \choose 2},$$ where the inner summation only sums over primes $p$ between $1$ and $i$ .
[b]p23.[/b] Let $a$, $b$, and $c$ be positive real solutions to the following equations. $$\frac{2b^2 +2c^2 -a^2}{4}= 25$$
$$\frac{2c^2 +2a^2 -b^2}{4}= 49$$
$$\frac{2a^2 +2b^2 -c^2}{4}= 64$$ The area of a triangle with side lengths $a$, $b$, and $c$ can be written as $\frac{x\sqrt{y}}{z}$ where $x$ and $z$ are relatively prime positive integers and $y$ is square-free. Find $x + y +z$.
[b]p24.[/b] Alan, Jiji, Ina, Ryan, and Gavin want to meet up. However, none of them know when to go, so they each pick a random $1$ hour period from $5$ AM to $11$ AM to meet up at Alan’s house. Find the probability that there exists a time when all of them are at the house at one time.
[b]Round 9 [/b]
[b]p25.[/b] Let $n$ be the number of registered participantsin this $LMT$. Estimate the number of digits of $\left[ {n \choose 2} \right]$ in base $10$. If your answer is $A$ and the correct answer is $C$, then your score will be
$$\left \lfloor \max \left( 0,20 - \left| \ln \left( \frac{A}{C}\right) \cdot 5 \right|\right| \right \rfloor.$$
[b]p26.[/b] Let $\gamma$ be theminimum value of $x^x$ over all real numbers $x$. Estimate $\lfloor 10000\gamma \rfloor$. If your answer is $A$ and the correct answer is $C$, then your score will be
$$\left \lfloor \max \left( 0,20 - \left| \ln \left( \frac{A}{C}\right) \cdot 5 \right|\right| \right \rfloor.$$
[b]p27.[/b] Let $$E = \log_{13} 1+log_{13}2+log_{13}3+...+log_{13}513513.$$ Estimate $\lfloor E \rfloor$. If your answer is $A$ and the correct answer is $C$, your score will be $$\left \lfloor \max \left( 0,20 - \left| \ln \left( \frac{A}{C}\right) \cdot 5 \right|\right| \right \rfloor.$$
PS. You should use hide for answers. Rounds 1-5 have been posted [url=https://artofproblemsolving.com/community/c3h3167127p28823220]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2022 Math Hour Olympiad, 8-10
[u]Round 1[/u]
[b]p1.[/b] Alex is writing a sequence of $A$’s and $B$’s on a chalkboard. Any $20$ consecutive letters must have an equal number of $A$’s and $B$’s, but any 22 consecutive letters must have a different number of $A$’s and $B$’s. What is the length of the longest sequence Alex can write?.
[b]p2.[/b] A positive number is placed on each of the $10$ circles in this picture. It turns out that for each of the nine little equilateral triangles, the number on one of its corners is the sum of the numbers on the other two corners. Is it possible that all $10$ numbers are different?
[img]https://cdn.artofproblemsolving.com/attachments/b/f/c501362211d1c2a577e718d2b1ed1f1eb77af1.png[/img]
[b]p3.[/b] Pablo and Nina take turns entering integers into the cells of a $3 \times 3$ table. Pablo goes first. The person who fills the last empty cell in a row must make the numbers in that row add to $0$. Can Nina ensure at least two of the columns have a negative sum, no matter what Pablo does?
[b]p4. [/b]All possible simplified fractions greater than $0$ and less than $1$ with denominators less than or equal to $100$ are written in a row with a space before each number (including the first).
Zeke and Qing play a game, taking turns choosing a blank space and writing a “$+$” or “$-$” sign in it. Zeke goes first. After all the spaces have been filled, Zeke wins if the value of the resulting expression is an integer.
Can Zeke win no matter what Qing does?
[img]https://cdn.artofproblemsolving.com/attachments/3/6/15484835686fbc2aa092e8afc6f11cd1d1fb88.png[/img]
[b]p5.[/b] A police officer patrols a town whose map is shown. The officer must walk down every street segment at least once and return to the starting point, only changing direction at intersections and corners. It takes the officer one minute to walk each segment. What is the fastest the officer can complete a patrol?
[img]https://cdn.artofproblemsolving.com/attachments/0/c/d827cf26c8eaabfd5b0deb92612a6e6ebffb47.png[/img]
[u]Round 2[/u]
[b]p6.[/b] Prove that among any $3^{2022}$ integers, it is possible to find exactly $3^{2021}$ of them whose sum is divisible by $3^{2021}$.
[b]p7.[/b] Given a list of three numbers, a zap consists of picking two of the numbers and decreasing each of them by their average. For example, if the list is $(5, 7, 10)$ and you zap $5$ and $10$, whose average is $7.5$, the new list is $(-2.5, 7, 2.5)$.
Is it possible to start with the list $(3, 1, 4)$ and, through some sequence of zaps, end with a list in which the sum of the three numbers is $0$?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2018 Pan-African Shortlist, A3
Akello divides a square up into finitely many white and red rectangles, each (rectangle) with sides parallel to the sides of the parent square. Within each white rectangle, she writes down the value of its width divided by its height, while within each red rectangle, she writes down the value of its height divided by its width. Finally, she calculates $x$, the sum of these numbers. If the total area of the white rectangles equals the total area of the red rectangles, what is the least possible value of $x$ she can get?
MOAA Gunga Bowls, 2020
[u]Set 6[/u]
[b]B16.[/b] Let $\ell_r$ denote the line $x + ry + r^2 = 420$. Jeffrey draws the lines $\ell_a$ and $\ell_b$ and calculates their single intersection point.
[b]B17.[/b] Let set $L$ consist of lines of the form $3x + 2ay = 60a + 48$ across all real constants a. For every line $\ell$ in $L$, the point on $\ell$ closest to the origin is in set $T$ . The area enclosed by the locus of all the points in $T$ can be expressed in the form nπ for some positive integer $n$. Compute $n$.
[b]B18.[/b] What is remainder when the $2020$-digit number $202020 ... 20$ is divided by $275$?
[u]Set 7[/u]
[b]B19.[/b] Consider right triangle $\vartriangle ABC$ where $\angle ABC = 90^o$, $\angle ACB = 30^o$, and $AC = 10$. Suppose a beam of light is shot out from point $A$. It bounces off side $BC$ and then bounces off side $AC$, and then hits point $B$ and stops moving. If the beam of light travelled a distance of $d$, then compute $d^2$.
[b]B20.[/b] Let $S$ be the set of all three digit numbers whose digits sum to $12$. What is the sum of all the elements in $S$?
[b]B21.[/b] Consider all ordered pairs $(m, n)$ where $m$ is a positive integer and $n$ is an integer that satisfy $$m! = 3n^2 + 6n + 15,$$ where $m! = m \times (m - 1) \times ... \times 1$. Determine the product of all possible values of $n$.
[u]Set 8[/u]
[b]B22.[/b] Compute the number of ordered pairs of integers $(m, n)$ satisfying $1000 > m > n > 0$ and $6 \cdot lcm(m - n, m + n) = 5 \cdot lcm(m, n)$.
[b]B23.[/b] Andrew is flipping a coin ten times. After every flip, he records the result (heads or tails). He notices that after every flip, the number of heads he had flipped was always at least the number of tails he had flipped. In how many ways could Andrew have flipped the coin?
[b]B24.[/b] Consider a triangle $ABC$ with $AB = 7$, $BC = 8$, and $CA = 9$. Let $D$ lie on $\overline{AB}$ and $E$ lie on $\overline{AC}$ such that $BCED$ is a cyclic quadrilateral and $D, O, E$ are collinear, where $O$ is the circumcenter of $ABC$. The area of $\vartriangle ADE$ can be expressed as $\frac{m\sqrt{n}}{p}$, where $m$ and $p$ are relatively prime positive integers, and $n$ is a positive integer not divisible by the square of any prime. What is $m + n + p$?
[u]Set 9[/u]
[i]This set consists of three estimation problems, with scoring schemes described.[/i]
[b]B25.[/b] Submit one of the following ten numbers: $$3 \,\,\,\, 6\,\,\,\, 9\,\,\,\, 12\,\,\,\, 15\,\,\,\, 18\,\,\,\, 21\,\,\,\, 24\,\,\,\, 27\,\,\,\, 30.$$
The number of points you will receive for this question is equal to the number you selected divided by the total number of teams that selected that number, then rounded up to the nearest integer. For example, if you and four other teams select the number $27$, you would receive $\left\lceil \frac{27}{5}\right\rceil = 6$ points.
[b]B26.[/b] Submit any integer from $1$ to $1,000,000$, inclusive. The standard deviation $\sigma$ of all responses $x_i$ to this question is computed by first taking the arithmetic mean $\mu$ of all responses, then taking the square root of average of $(x_i -\mu)^2$ over all $i$. More, precisely, if there are $N$ responses, then $$\sigma =\sqrt{\frac{1}{N} \sum^N_{i=1} (x_i -\mu)^2}.$$ For this problem, your goal is to estimate the standard deviation of all responses.
An estimate of $e$ gives $\max \{ \left\lfloor 130 ( min \{ \frac{\sigma }{e},\frac{e}{\sigma }\}^{3}\right\rfloor -100,0 \}$ points.
[b]B27.[/b] For a positive integer $n$, let $f(n)$ denote the number of distinct nonzero exponents in the prime factorization of $n$. For example, $f(36) = f(2^2 \times 3^2) = 1$ and $f(72) = f(2^3 \times 3^2) = 2$. Estimate $N = f(2) + f(3) +.. + f(10000)$.
An estimate of $e$ gives $\max \{30 - \lfloor 7 log_{10}(|N - e|)\rfloor , 0\}$ points.
PS. You had better use hide for answers. First sets have been posted [url=https://artofproblemsolving.com/community/c4h2777391p24371239]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1996 Tournament Of Towns, (490) 3
Prove that from any sequence of $1996$ real numbers $a_1$, $a_2$,$...$, $a_{1996}$ one can choose one or several numbers standing successively one after another so that their sum differs from an integer by less than $0.001$.
(A Kanel)
1949-56 Chisinau City MO, 37
Calculate the sum: $nx+(n-1)x^2+...+2x^{n-1}+x^n$
1973 AMC 12/AHSME, 16
If the sum of all the angles except one of a convex polygon is $ 2190^{\circ}$, then the number of sides of the polygon must be
$ \textbf{(A)}\ 13 \qquad
\textbf{(B)}\ 15 \qquad
\textbf{(C)}\ 17 \qquad
\textbf{(D)}\ 19 \qquad
\textbf{(E)}\ 21$
1999 Putnam, 2
Let $p(x)$ be a polynomial that is nonnegative for all real $x$. Prove that for some $k$, there are polynomials $f_1(x),f_2(x),\ldots,f_k(x)$ such that \[p(x)=\sum_{j=1}^k(f_j(x))^2.\]
2019 Ramnicean Hope, 3
Let be two polynoms $ P,Q\in\mathbb{C} [X] $ with degree at least $ 1, $ and such that $ P $ has only simple roots. Prove that the following affirmations are equivalent:
$ \text{(i)} P\circ Q $ is divisible by $ P. $
$ \text{(ii)} $ The evaluation of $ Q $ at any root of $ P $ is a root of $ P. $
[i]Marcel Țena[/i]
Maryland University HSMC part II, 2012
[b]p1.[/b] (a) Suppose $101$ Dalmatians chase $2012$ squirrels. Each squirrel gets chased by at most one Dalmatian, and each Dalmatian chases at least one squirrel. Show that two Dalmatians chase the same number of squirrels.
(b) What is the largest number of Dalmatians that can chase $2012$ squirrels in a way that each Dalmatian chases at least one squirrel and no two Dalmatians chase the same number of squirrels?
[b]p2.[/b] Lucy and Linus play the following game. They start by putting the integers $1, 2, 3, ..., 2012$ in a hat. In each round of the game, Lucy and Linus each draw a number from the hat. If the two numbers are $a$ and $b$, they throw away these numbers and put the number $|a - b|$ back into the hat. After $2011$ rounds, there is only one number in the hat. If it is even, Lucy wins. If it is odd, Linus wins.
(a) Prove that there is a sequence of drawings that makes Lucy win.
(b) Prove that Lucy always wins.
[b]p3.[/b] Suppose $x$ is a positive real number and $x^{1990}$, $x^{2001}$, and $x^{2012}$ differ by integers. Prove that $x$ is an integer.
[b]p4.[/b] Suppose that each point in three-dimensional space is colored with one of five colors and suppose that each color is used at least once. Prove that there is some plane that contains at least four of the colors.
[b]p5.[/b] Two circles, $C_1$ and $C_2$, are tangent at point $A$, with $C_1$ lying inside $C_2$ (and $C_1 \ne C_2$). The line through their centers intersects $C_1$ at $B_1$ and $C_2$ at $B_2$. A line $L$ is drawn through $A$ and it intersects $C_1$ at $P_1$ (with $P_1 \ne A$) and intersects $C_2$ at $P_2$ (with $P_2 \ne A$). The perpendicular from $P_2$ to the line $B_1B_2$ intersects the line $B_1B_2$ at $F$. Prove that if the line $P_1F$ is tangent to $C_1$ then $F$ is the midpoint of the line segment $B_1B_2$.
[img]https://cdn.artofproblemsolving.com/attachments/9/e/4db59be9fa764d3e910a828ed3296907ca5657.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1988 IMO Shortlist, 16
Show that the solution set of the inequality
\[ \sum^{70}_{k \equal{} 1} \frac {k}{x \minus{} k} \geq \frac {5}{4}
\]
is a union of disjoint intervals, the sum of whose length is 1988.
2024 Al-Khwarizmi IJMO, 6
Let $a, b, c$ be distinct real numbers such that $a+b+c=0$ and $$
a^{2}-b=b^{2}-c=c^{2}-a.
$$
Evaluate all the possible values of $a b+a c+b c$.
[i]Proposed by Nguyen Anh Vu, Vietnam[/i]
2011 NIMO Problems, 9
The roots of the polynomial $P(x) = x^3 + 5x + 4$ are $r$, $s$, and $t$. Evaluate $(r+s)^4 (s+t)^4 (t+r)^4$.
[i]Proposed by Eugene Chen
[/i]