This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2013 Serbia Additional Team Selection Test, 3

Tags: subset , algebra
Let $p > 3$ be a given prime number. For a set $S \subseteq \mathbb{Z}$ and $a \in \mathbb{N}$ , define $S_a = \{ x \in \{ 0,1, 2,...,p-1 \}$ | $(\exists_s \in S) x \equiv_p a \cdot s \}$ . $(a)$ How many sets $S \subseteq \{ 1, 2,...,p-1 \} $ are there for which the sequence $S_1 , S_2 , ..., S_{p-1}$ contains exactly two distinct terms? $(b)$ Determine all numbers $k \in \mathbb{N}$ for which there is a set $ S \subseteq \{ 1, 2,...,p-1 \} $ such that the sequence $S_1 , S_2 , ..., S_{p-1} $ contains exactly $k$ distinct terms. [i]Proposed by Milan Basic and Milos Milosavljevic[/i]

2016 Iran Team Selection Test, 1

Tags: algebra
A real function has been assigned to every cell of an $n \times n$ table. Prove that a function can be assigned to each row and each column of this table such that the function assigned to each cell is equivalent to the combination of functions assigned to the row and the column containing it.

2007 Cuba MO, 4

Find all functions $f : R_+ \to R_+$ such that $$x^2(f(x)+f(y)) = (x+y)f(f(x)y)$$ for all positive real $x, y$.

2012 Peru MO (ONEM), 2

Tags: algebra
Let $x, y$ be nonzero real numbers that satisfy the following equation: $$x^3 + y^3 + 3x^2y^2 = x^3y^3.$$ Determine all the values that the expression $\frac{1}{x}+ \frac{1}{y}$ can take.

2016 Baltic Way, 9

Find all quadruples $(a, b, c, d)$ of real numbers that simultaneously satisfy the following equations: $$\begin{cases} a^3 + c^3 = 2 \\ a^2b + c^2d = 0 \\ b^3 + d^3 = 1 \\ ab^2 + cd^2 = -6.\end{cases}$$

2007 Balkan MO Shortlist, A6

Find all real functions $f$ defined on $ \mathbb R$, such that \[f(f(x)+y) = f(f(x)-y)+4f(x)y ,\] for all real numbers $x,y$.

2010 Slovenia National Olympiad, 1

Tags: algebra
For a real number $t$ and positive real numbers $a,b$ we have \[2a^2-3abt+b^2=2a^2+abt-b^2=0\] Find $t.$

1978 IMO Longlists, 25

Consider a polynomial $P(x) = ax^2 + bx + c$ with $a > 0$ that has two real roots $x_1, x_2$. Prove that the absolute values of both roots are less than or equal to $1$ if and only if $a + b + c \ge 0, a -b + c \ge 0$, and $a - c \ge 0$.

2023 BMT, 1

Tags: algebra
Arjun eats twice as many chocolates as Theo, and Wen eats twice as many chocolates as Arjun. If Arjun eats $6$ chocolates, compute the total number of chocolates that Arjun, Theo, and Wen eat.

2005 Germany Team Selection Test, 1

Let $a_0$, $a_1$, $a_2$, ... be an infinite sequence of real numbers satisfying the equation $a_n=\left|a_{n+1}-a_{n+2}\right|$ for all $n\geq 0$, where $a_0$ and $a_1$ are two different positive reals. Can this sequence $a_0$, $a_1$, $a_2$, ... be bounded? [i]Proposed by Mihai Bălună, Romania[/i]

2021 Latvia TST, 2.5

Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of $$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$ [i]Israel[/i]

1993 Taiwan National Olympiad, 1

Tags: algebra
A sequence $(a_{n})$ of positive integers is given by $a_{n}=[n+\sqrt{n}+\frac{1}{2}]$. Find all of positive integers which belong to the sequence.

2002 Moldova Team Selection Test, 4

Tags: algebra
The sequence Pn (x), n ∈ N of polynomials is defined as follows: P0 (x) = x, P1 (x) = 4x³ + 3x Pn+1 (x) = (4x² + 2)Pn (x) − Pn−1 (x), for all n ≥ 1 For every positive integer m, we consider the set A(m) = { Pn (m) | n ∈ N }. Show that the sets A(m) and A(m+4) have no common elements.

2001 Manhattan Mathematical Olympiad, 3

Let $x_1$ and $x_2$ be roots of the equation $x^2 - 6x + 1 = 0$. Prove that for any integer $n \ge 1$ the number $x_1^n + x_2^n$ is integer and is not divisible by $5$.

2019-2020 Winter SDPC, 5

Tags: algebra
Let $a_1, a_2, \ldots$ be a sequence of real numbers such that $a_1=4$ and $a_2=7$ such that for all integers $n$, $\frac{1}{a_{2n-1}}, \frac{1}{a_{2n}}, \frac{1}{a_{2n+1}}$ forms an arithmetic progression, and $a_{2n}, a_{2n+1}, a_{2n+2}$ forms an arithmetic progression. Find, with proof, the prime factorization of $a_{2019}$.

2020/2021 Tournament of Towns, P4

Tags: algebra , root
It is well-known that a quadratic equation has no more than 2 roots. Is it possible for the equation $\lfloor x^2\rfloor+px+q=0$ with $p\neq 0$ to have more than 100 roots? [i]Alexey Tolpygo[/i]

1952 Czech and Slovak Olympiad III A, 1

Tags: algebra
Let $a,b,c$ be positive rational numbers such that $\sqrt a+\sqrt b=c$. Show that $\sqrt a$ and $\sqrt b$ are also rational.

2013 Kazakhstan National Olympiad, 3

Consider the following sequence : $a_1=1 ; a_n=\frac{a_[{\frac{n}{2}]}}{2}+\frac{a_[{\frac{n}{3}]}}{3}+\ldots+\frac{a_[{\frac{n}{n}]}}{n}$. Prove that $ a_{2n}< 2*a_{n } (\forall n\in\mathbb{N})$

1963 All Russian Mathematical Olympiad, 038

Find such real $p, q, a, b$, that for all $x$ an equality is held: $$(2x-1)^{20} - (ax+b)^{20} = (x^2+px+q)^{10}$$

1996 AIME Problems, 1

In a magic square, the sum of the three entries in any row, column, or diagonal is the same value. The figure shows four of the entries of a magic square. Find $x.$ [asy] size(100);defaultpen(linewidth(0.7)); int i; for(i=0; i<4; i=i+1) { draw((0,2*i)--(6,2*i)^^(2*i,0)--(2*i,6)); } label("$x$", (1,5)); label("$1$", (1,3)); label("$19$", (3,5)); label("$96$", (5,5));[/asy]

LMT Guts Rounds, 2021 S

[u]Round 5[/u] [b]p13.[/b] Pieck the Frog hops on Pascal’s Triangle, where she starts at the number $1$ at the top. In a hop, Pieck can hop to one of the two numbers directly below the number she is currently on with equal probability. Given that the expected value of the number she is on after $7$ hops is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers, find $m+n$. [b]p14.[/b] Maisy chooses a random set $(x, y)$ that satisfies $$x^2 + y^2 -26x -10y \le 482.$$ The probability that $y>0$ can be expressed as $\frac{A\pi -B\sqrt{C}}{D \pi}$. Find $A+B +C +D$. [color=#f00]Due to the problem having a typo, all teams who inputted answers received points[/color] [b]p15.[/b] $6$ points are located on a circle. How many ways are there to draw any number of line segments between the points such that none of the line segments overlap and none of the points are on more than one line segment? (It is possible to draw no line segments). [u]Round 6[/u] [b]p16.[/b] Find the number of $3$ by $3$ grids such that each square in the grid is colored white or black and no two black squares share an edge. [b]p17.[/b] Let $ABC$ be a triangle with side lengths $AB = 20$, $BC = 25$, and $AC = 15$. Let $D$ be the point on BC such that $CD = 4$. Let $E$ be the foot of the altitude from $A$ to $BC$. Let $F$ be the intersection of $AE$ with the circle of radius $7$ centered at $A$ such that $F$ is outside of triangle $ABC$. $DF$ can be expressed as $\sqrt{m}$, where $m$ is a positive integer. Find $m$. [b]p18.[/b] Bill and Frank were arrested under suspicion for committing a crime and face the classic Prisoner’s Dilemma. They are both given the choice whether to rat out the other and walk away, leaving their partner to face a $9$ year prison sentence. Given that neither of them talk, they both face a $3$ year sentence. If both of them talk, they both will serve a $6$ year sentence. Both Bill and Frank talk or do not talk with the same probabilities. Given the probability that at least one of them talks is $\frac{11}{36}$ , find the expected duration of Bill’s sentence in months. [u]Round 7[/u] [b]p19.[/b] Rectangle $ABCD$ has point $E$ on side $\overline{CD}$. Point $F$ is the intersection of $\overline{AC}$ and $\overline{BE}$. Given that the area of $\vartriangle AFB$ is $175$ and the area of $\vartriangle CFE$ is $28$, find the area of $ADEF$. [b]p20.[/b] Real numbers $x, y$, and $z$ satisfy the system of equations $$5x+ 13y -z = 100,$$ $$25x^2 +169y^2 -z2 +130x y= 16000,$$ $$80x +208y-2z = 2020.$$ Find the value of $x yz$. [color=#f00]Due to the problem having infinitely many solutions, all teams who inputted answers received points. [/color] [b]p21.[/b] Bob is standing at the number $1$ on the number line. If Bob is standing at the number $n$, he can move to $n +1$, $n +2$, or $n +4$. In howmany different ways can he move to the number $10$? [u]Round 8[/u] [b]p22.[/b] A sequence $a_1,a_2,a_3, ...$ of positive integers is defined such that $a_1 = 4$, and for each integer $k \ge 2$, $$2(a_{k-1} +a_k +a_{k+1}) = a_ka_{k-1} +8.$$ Given that $a_6 = 488$, find $a_2 +a_3 +a_4 +a_5$. [b]p23.[/b] $\overline{PQ}$ is a diameter of circle $\omega$ with radius $1$ and center $O$. Let $A$ be a point such that $AP$ is tangent to $\omega$. Let $\gamma$ be a circle with diameter $AP$. Let $A'$ be where $AQ$ hits the circle with diameter $AP$ and $A''$ be where $AO$ hits the circle with diameter $OP$. Let $A'A''$ hit $PQ$ at $R$. Given that the value of the length $RA'$ is is always less than $k$ and $k$ is minimized, find the greatest integer less than or equal to $1000k$. [b]p24.[/b] You have cards numbered $1,2,3, ... ,100$ all in a line, in that order. You may swap any two adjacent cards at any time. Given that you make ${100 \choose 2}$ total swaps, where you swap each distinct pair of cards exactly once, and do not do any swaps simultaneously, find the total number of distinct possible final orderings of the cards. PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3166472p28814057]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3166480p28814155]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2004 Switzerland - Final Round, 5

Let $a$ and $b$ be fixed positive numbers. Find the smallest possible depending on $a$ and $b$ value of the sum $$\frac{x^2}{(ay + bz)(az + by)}+\frac{y^2}{(az + bx)(ax + bz)}+\frac{z^2}{(ax + by)(ay + bx)},$$ where $x, y, z$ are positive real numbers.

2020 LMT Fall, B1

Tags: algebra
Four $L$s are equivalent to three $M$s. Nine $M$s are equivalent to fourteen $T$ s. Seven $T$ s are equivalent to two $W$ s. If Kevin has thirty-six $L$s, how many $W$ s would that be equivalent to?

1980 All Soviet Union Mathematical Olympiad, 303

The number $x$ from $[0,1]$ is written as an infinite decimal fraction. Having rearranged its first five digits after the point we can obtain another fraction that corresponds to the number $x_1$. Having rearranged five digits of $x_k$ from $(k+1)$-th till $(k+5)$-th after the point we obtain the number $x_{k+1}$. a) Prove that the sequence $x_i$ has limit. b) Can this limit be irrational if we have started with the rational number? c) Invent such a number, that always produces irrational numbers, no matter what digits were transposed.

2009 ISI B.Math Entrance Exam, 2

Let $c$ be a fixed real number. Show that a root of the equation \[x(x+1)(x+2)\cdots(x+2009)=c\] can have multiplicity at most $2$. Determine the number of values of $c$ for which the equation has a root of multiplicity $2$.