Found problems: 15925
2018 Brazil Undergrad MO, 13
A continuous function $ f: \mathbb {R} \to \mathbb {R} $ satisfies $ f (x) f (f (x)) = 1 $ for every real $ x $ and $ f (2020) = 2019 $ . What is the value of $ f (2018) $?
2012 Dutch BxMO/EGMO TST, 1
Do there exist quadratic polynomials $P(x)$ and $Q(x)$ with real coeffcients such that the polynomial $P(Q(x))$ has precisely the zeros $x = 2, x = 3, x =5$ and $x = 7$?
DMM Individual Rounds, 2012 Tie
[b]p1.[/b] An $8$-inch by $11$-inch sheet of paper is laid flat so that the top and bottom edges are $8$ inches long. The paper is then folded so that the top left corner touches the right edge. What is the minimum possible length of the fold?
[b]p2.[/b] Triangle $ABC$ is equilateral, with $AB = 6$. There are points $D$, $E$ on segment AB (in the order $A$, $D$, $E$, $B$), points $F$, $G$ on segment $BC$ (in the order $B$, $F$, $G$, $C$), and points $H$, $I$ on segment $CA$ (in the order $C$, $H$, $I$, $A$) such that $DE = F G = HI = 2$. Considering all such configurations of $D$, $E$, $F$, $G$, $H$, $I$, let $A_1$ be the maximum possible area of (possibly degenerate) hexagon $DEF GHI$ and let $A_2$ be the minimum possible area. Find $A_1 - A_2$.
[b]p3.[/b] Find $$\tan \frac{\pi}{7} \tan \frac{2\pi}{7} \tan \frac{3\pi}{7}$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2006 IMO Shortlist, 3
The sequence $c_{0}, c_{1}, . . . , c_{n}, . . .$ is defined by $c_{0}= 1, c_{1}= 0$, and $c_{n+2}= c_{n+1}+c_{n}$ for $n \geq 0$. Consider the set $S$ of ordered pairs $(x, y)$ for which there is a finite set $J$ of positive integers such that $x=\textstyle\sum_{j \in J}{c_{j}}$, $y=\textstyle\sum_{j \in J}{c_{j-1}}$. Prove that there exist real numbers $\alpha$, $\beta$, and $M$ with the following property: An ordered pair of nonnegative integers $(x, y)$ satisfies the inequality \[m < \alpha x+\beta y < M\] if and only if $(x, y) \in S$.
[i]Remark:[/i] A sum over the elements of the empty set is assumed to be $0$.
2002 Junior Balkan Team Selection Tests - Moldova, 5
For any natural number $m \ge 1$ and any real number $x \ge 0$ we define expression
$$E (x, m) = \frac{(1^4 + x) (3^4 + x) (5^4 + x) ... [(2m -1)^ 4 + x]}{(2^4 + x) (4^4 + x) (6^4 + x) ... [(2m )^ 4 + x]}.$$
It is known that $E\left(\frac{1}{4},m\right)=\frac{1}{1013}.$ . Determine the value of $m$
2004 Kazakhstan National Olympiad, 6
The sequence of integers $ a_1 $, $ a_2 $, $ \dots $ is defined as follows:
$ a_1 = 1 $ and $ n> 1 $, $ a_ {n + 1} $ is the smallest integer greater than $ a_n $ and such, that $ a_i + a_j \neq 3a_k $ for any $ i, j $ and $ k $ from $ \{1, 2, \dots, n + 1 \} $ are not necessarily different.
Define $ a_ {2004} $.
1981 IMO Shortlist, 3
Find the minimum value of
\[\max(a + b + c, b + c + d, c + d + e, d + e + f, e + f + g)\]
subject to the constraints
(i) $a, b, c, d, e, f, g \geq 0,$
(ii)$ a + b + c + d + e + f + g = 1.$
2010 Princeton University Math Competition, 6
Define $\displaystyle{f(x) = x + \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x + \ldots}}}}}$. Find the smallest integer $x$ such that $f(x)\ge50\sqrt{x}$.
(Edit: The official question asked for the "smallest integer"; the intended question was the "smallest positive integer".)
2018 Harvard-MIT Mathematics Tournament, 5
Compute the smallest positive integer $n$ for which $$\sqrt{100+\sqrt{n}}+\sqrt{100-\sqrt{n}}$$ is an integer.
2016 239 Open Mathematical Olympiad, 7
Find all functions $f:\mathbb{R^+}\to\mathbb{R^+}$ satisfying$$f(xy+x+y)=(f(x)-f(y))f(y-x-1)$$ for all $x>0, y>x+1$.
1969 Leningrad Math Olympiad, grade 6
[b]6.1 / 7.1[/b] There are $8$ rooks on the chessboard such that no two of them they don't hit each other. Prove that the black squares contain an even number of rooks.
[b]6.2 [/b] The natural numbers are arranged in a $3 \times 3$ table. Kolya and Petya crossed out 4 numbers each. It turned out that the sum of the numbers crossed out by Petya is three times the sum numbers crossed out by Kolya. What number is left uncrossed?
$$\begin{tabular}{|c|c|c|}\hline 4 & 12 & 8 \\ \hline 13 & 24 & 14 \\ \hline 7 & 5 & 23 \\ \hline \end{tabular} $$
[b]6.3 [/b] Misha and Sasha left at noon on bicycles from city A to city B. At the same time, I left from B to A Vanya. All three travel at constant but different speeds. At one o'clock Sasha was exactly in the middle between Misha and Vanya, and at half past one Vanya was in the middle between Misha and Sasha. When Misha will be exactly in the middle between Sasha and Vanya?
[b]6.4[/b] There are $35$ piles of nuts on the table. Allowed to add one nut at a time to any $23$ piles. Prove that by repeating this operation, you can equalize all the heaps.
[b]6.5[/b] There are $64$ vertical stripes on the round drum, and each stripe you need to write down a six-digit number from digits $1$ and $2$ so that all the numbers were different and any two adjacent ones differed in exactly one discharge. How to do this?
[b]6.6 / 7.6[/b] Two brilliant mathematicians were told in natural terms number and were told that these numbers differ by one. After that they take turns asking each other the same question: “Do you know my number?" Prove that sooner or later one of them will answer positively.
PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988085_1969_leningrad_math_olympiad]here[/url].
2015 NIMO Problems, 4
Let $A_0A_1 \dots A_{11}$ be a regular $12$-gon inscribed in a circle with diameter $1$. For how many subsets $S \subseteq \{1,\dots,11\}$ is the product \[ \prod_{s \in S} A_0A_s \] equal to a rational number? (The empty product is declared to be $1$.)
[i]Proposed by Evan Chen[/i]
2011 Kosovo National Mathematical Olympiad, 2
Find all solutions to the equation:
\[ \left(\left\lfloor x+\frac{7}{3} \right\rfloor \right)^2-\left\lfloor x-\frac{9}{4} \right\rfloor = 16 \]
2014 Taiwan TST Round 3, 5
Let $n$ be a positive integer, and consider a sequence $a_1 , a_2 , \dotsc , a_n $ of positive integers. Extend it periodically to an infinite sequence $a_1 , a_2 , \dotsc $ by defining $a_{n+i} = a_i $ for all $i \ge 1$. If \[a_1 \le a_2 \le \dots \le a_n \le a_1 +n \] and \[a_{a_i } \le n+i-1 \quad\text{for}\quad i=1,2,\dotsc, n, \] prove that \[a_1 + \dots +a_n \le n^2. \]
2018 PUMaC Live Round, 7.1
Find the number of nonzero terms of the polynomial $P(x)$ if $$x^{2018}+x^{2017}+x^{2016}+x^{999}+1=(x^4+x^3+x^2+x+1)P(x).$$
2000 Harvard-MIT Mathematics Tournament, 1
You are given a number, and round it to the nearest thousandth, round this result to nearest hundredth, and round this result to the nearest tenth. If the final result is $.7$, what is the smallest number you could have been given? As is customary, $5$’s are always rounded up. Give the answer as a decimal.
2023 Iran MO (3rd Round), 2
Does there exist bijections $f,g$ from positive integers to themselves st:
$$g(n)=\frac{f(1)+f(2)+ \cdot \cdot \cdot +f(n)}{n}$$
holds for any $n$?
2018 CHMMC (Fall), 4
Find the sum of the real roots of $f(x) = x^4 + 9x^3 + 18x^2 + 18x + 4$.
1999 China National Olympiad, 2
Determine the maximum value of $\lambda$ such that if $f(x) = x^3 +ax^2 +bx+c$ is a cubic polynomial with all its roots nonnegative, then \[f(x)\geq\lambda(x -a)^3\] for all $x\geq0$. Find the equality condition.
2008 Hanoi Open Mathematics Competitions, 5
Find all polynomials $P(x)$ of degree $1$ such that
$\underset {a\le x\le b}{max} P(x) - \underset {a\le x\le b}{min} P(x) =b-a$ , $\forall a,b\in R$ where $a < b$
2001 India IMO Training Camp, 1
Complex numbers $\alpha$ , $\beta$ , $\gamma$ have the property that $\alpha^k +\beta^k +\gamma^k$ is an integer for every natural number $k$. Prove that the polynomial \[(x-\alpha)(x-\beta )(x-\gamma )\] has integer coefficients.
2012 BMT Spring, round 5
[b]p1.[/b] Let $n$ be the number so that $1 - 2 + 3 - 4 + ... - (n - 1) + n = 2012$. What is $4^{2012}$ (mod $n$)?
[b]p2. [/b]Consider three unit squares placed side by side. Label the top left vertex $P$ and the bottom four vertices $A,B,C,D$ respectively. Find $\angle PBA + \angle PCA + \angle PDA$.
[b]p3.[/b] Given $f(x) = \frac{3}{x-1}$ , then express $\frac{9(x^2-2x+1)}{x^2-8x+16}$ entirely in terms of $f(x)$. In other words, $x$ should not be in
your answer, only $f(x)$.
[b]p4.[/b] Right triangle with right angle $B$ and integer side lengths has $BD$ as the altitude. $E$ and $F$ are the incenters of triangles $ADB$ and $BDC$ respectively. Line $EF$ is extended and intersects $BC$ at $G$, and $AB$ at $H$. If $AB = 15$ and $BC = 8$, find the area of triangle $BGH$.
[b]p5.[/b] Let $a_1, a_2, ..., a_n$ be a sequence of real numbers. Call a $k$-inversion $(0 < k\le n)$ of a sequence to be indices $i_1, i_2, .. , i_k$ such that $i_1 < i_2 < .. < i_k$ but $a_{i1} > a_{i2} > ...> a_{ik}$ . Calculate the expected number of $6$-inversions in a random permutation of the set $\{1, 2, ... , 10\}$.
[b]p6.[/b] Chell is given a strip of squares labeled $1, .. , 6$ all placed side to side. For each $k \in {1, ..., 6}$, she then chooses one square at random in $\{1, ..., k\}$ and places a Weighted Storage Cube there. After she has placed all $6$ cubes, she computes her score as follows: For each square, she takes the number of cubes in the pile and then takes the square (i.e. if there were 3 cubes in a square, her score for that square would be $9$). Her overall score is the sum of the scores of each square. What is the expected value of her score?
PS. You had better use hide for answers.
1966 AMC 12/AHSME, 19
Let $s_1$ be the sum of the first $n$ terms of the arithmetic sequence $8,12,\cdots$ and let $s_2$ be the sum of the first $n$ terms of the arithmetic sequence $17,19\cdots$. Assume $n\ne 0$. Then $s_1=s_2$ for:
$\text{(A)} \ \text{no value of n} \qquad \text{(B)} \ \text{one value of n} \qquad \text{(C)} \ \text{two values of n}$
$\text{(D)} \ \text{four values of n} \qquad \text{(E)} \ \text{more than four values of n}$
2014 LMT, Team Round
[b]p1.[/b] Let $A\% B = BA - B - A + 1$. How many digits are in the number $1\%(3\%(3\%7))$ ?
[b]p2. [/b]Three circles, of radii $1, 2$, and $3$ are all externally tangent to each other. A fourth circle is drawn which passes through the centers of those three circles. What is the radius of this larger circle?
[b]p3.[/b] Express $\frac13$ in base $2$ as a binary number. (Which, similar to how demical numbers have a decimal point, has a “binary point”.)
[b]p4. [/b] Isosceles trapezoid $ABCD$ with $AB$ parallel to $CD$ is constructed such that $DB = DC$. If $AD = 20$, $AB = 14$, and $P$ is the point on $AD$ such that $BP + CP$ is minimized, what is $AP/DP$?
[b]p5.[/b] Let $f(x) = \frac{5x-6}{x-2}$ . Define an infinite sequence of numbers $a_0, a_1, a_2,....$ such that $a_{i+1} = f(a_i)$ and $a_i$ is always an integer. What are all the possible values for $a_{2014}$ ?
[b]p6.[/b] $MATH$ and $TEAM$ are two parallelograms. If the lengths of $MH$ and $AE$ are $13$ and $15$, and distance from $AM$ to $T$ is $12$, find the perimeter of $AMHE$.
[b]p7.[/b] How many integers less than $1000$ are there such that $n^n + n$ is divisible by $5$ ?
[b]p8.[/b] $10$ coins with probabilities of $1, 1/2, 1/3 ,..., 1/10$ of coming up heads are flipped. What is the probability that an odd number of them come up heads?
[b]p9.[/b] An infinite number of coins with probabilities of $1/4, 1/9, 1/16, ...$ of coming up heads are all flipped. What is the probability that exactly $ 1$ of them comes up heads?
[b]p10.[/b] Quadrilateral $ABCD$ has side lengths $AB = 10$, $BC = 11$, and $CD = 13$. Circles $O_1$ and $O_2$ are inscribed in triangles $ABD$ and $BDC$. If they are both tangent to $BD$ at the same point $E$, what is the length of $DA$ ?
PS. You had better use hide for answers.
2003 AMC 8, 4
A group of children riding on bicycles and tricycles rode past Billy Bob's house. Billy Bob counted $7$ children and $19$ wheels. How many tricycles were there?
$\textbf{(A)}\ 2 \qquad
\textbf{(B)}\ 4 \qquad
\textbf{(C)}\ 5 \qquad
\textbf{(D)}\ 6 \qquad
\textbf{(E)}\ 7$