Found problems: 15925
2024 India IMOTC, 10
Let $r>0$ be a real number. We call a monic polynomial with complex coefficients $r$-[i]good[/i] if all of its roots have absolute value at most $r$. We call a monic polynomial with complex coefficients [i]primordial[/i] if all of its coefficients have absolute value at most $1$.
a) Prove that any $1$-good polynomial has a primordial multiple.
b) If $r>1$, prove that there exists an $r$-good polynomial that does not have a primordial multiple.
[i]Proposed by Pranjal Srivastava[/i]
2021 IMO, 1
Let $n \geqslant 100$ be an integer. Ivan writes the numbers $n, n+1, \ldots, 2 n$ each on different cards. He then shuffles these $n+1$ cards, and divides them into two piles. Prove that at least one of the piles contains two cards such that the sum of their numbers is a perfect square.
DMM Team Rounds, 2021
[b]p1. [/b] In basketball, teams can score $1, 2$, or $3$ points each time. Suppose that Duke basketball have scored $8$ points so far. What is the total number of possible ways (ordered) that they have scored?
For example, $(1, 2, 2, 2, 1)$,$(1, 1, 2, 2, 2)$ are two different ways.
[b]p2.[/b] All the positive integers that are coprime to $2021$ are grouped in increasing order, such that the nth group contains $2n - 1$ numbers. Hence the first three groups are $\{1\}$, $\{2, 3, 4\}$, $\{5, 6, 7, 8, 9\}$. Suppose that $2022$ belongs to the $k$th group. Find $k$.
[b]p3.[/b] Let $A = (0, 0)$ and $B = (3, 0)$ be points in the Cartesian plane. If $R$ is the set of all points $X$ such that $\angle AXB \ge 60^o$ (all angles are between $0^o$ and $180^o$), find the integer that is closest to the area of $R$.
[b]p4.[/b] What is the smallest positive integer greater than $9$ such that when its left-most digit is erased, the resulting number is one twenty-ninth of the original number?
[b]p5. [/b] Jonathan is operating a projector in the cartesian plane. He sets up $2$ infinitely long mirrors represented by the lines $y = \tan(15^o)x$ and $y = 0$, and he places the projector at $(1, 0)$ pointed perpendicularly to the $x$-axis in the positive $y$ direction. Jonathan furthermore places a screen on one of the mirrors such that light from the projector reflects off the mirrors a total of three times before hitting the screen. Suppose that the coordinates of the screen is $(a, b)$. Find $10a^2 + 5b^2$.
[b]p6.[/b] Dr Kraines has a cube of size $5 \times 5 \times 5$, which is made from $5^3$ unit cubes. He then decides to choose $m$ unit cubes that have an outside face such that any two different cubes don’t share a common vertex. What is the maximum value of $m$?
[b]p7.[/b] Let $a_n = \tan^{-1}(n)$ for all positive integers $n$. Suppose that $$\sum_{k=4}^{\infty}(-1)^{\lfloor \frac{k}{2} \rfloor +1} \tan(2a_k)$$ is equals to $a/b$ , where $a, b$ are relatively prime. Find $a + b$.
[b]p8.[/b] Rishabh needs to settle some debts. He owes $90$ people and he must pay \$ $(101050 + n)$ to the $n$th person where $1 \le n \le 90$. Rishabh can withdraw from his account as many coins of values \$ $2021$ and \$ $x$ for some fixed positive integer $x$ as is necessary to pay these debts. Find the sum of the four least values of $x$ so that there exists a person to whom Rishabh is unable to pay the exact amount owed using coins.
[b]p9.[/b] A frog starts at $(1, 1)$. Every second, if the frog is at point $(x, y)$, it moves to $(x + 1, y)$ with probability $\frac{x}{x+y}$ and moves to $(x, y + 1)$ with probability $\frac{y}{x+y}$ . The frog stops moving when its $y$ coordinate is $10$. Suppose the probability that when the frog stops its $x$-coordinate is strictly less than $16$, is given by $m/n$ where $m, n$ are positive integers that are relatively prime. Find $m + n.$
[b]p10.[/b] In the triangle $ABC$, $AB = 585$, $BC = 520$, $CA = 455$. Define $X, Y$ to be points on the segment $BC$. Let $Z \ne A$ be the intersection of $AY$ with the circumcircle of $ABC$. Suppose that $XZ$ is parallel to $AC$ and the circumcircle of $XYZ$ is tangent to the circumcircle of $ABC$ at $Z$. Find the length of $XY$ .
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2023 Durer Math Competition Finals, 3
Hapi, the god of the annual flooding of the Nile is preparing for this year’s flooding. The shape of the channel of the Nile can be described by the function $y = \frac{-1000}{ x^2+100}$ where the $x$ and $y$ coordinates are in metres. The depth of the river is $5$ metres now. Hapi plans to increase the water level by $3$ metres. How many metres wide will the river be after the flooding? The depth of the river is always measured at its deepest point.
[img]https://cdn.artofproblemsolving.com/attachments/8/3/4e1d277e5cacf64bf82c110d521747592b928e.png[/img]
1992 IMO Longlists, 51
Let $ f, g$ and $ a$ be polynomials with real coefficients, $ f$ and $ g$ in one variable and $ a$ in two variables. Suppose
\[ f(x) \minus{} f(y) \equal{} a(x, y)(g(x) \minus{} g(y)) \forall x,y \in \mathbb{R}\]
Prove that there exists a polynomial $ h$ with $ f(x) \equal{} h(g(x)) \text{ } \forall x \in \mathbb{R}.$
1997 Chile National Olympiad, 1
Lautaro, Camilo and Rafael give the same exams. Each note is a positive integer. Camilo was the first in physics. Lautaro obtained a total score of $20$, Camilo, a total of $10$ and Rafael, a total of $9$. Among all the tests, there were no two scores that were repeated. Determine how many They took exams, and who was second in math.
1956 Moscow Mathematical Olympiad, 336
$64$ non-negative numbers whose sum equals $1956$ are arranged in a square table, eight numbers in each row and each column. The sum of the numbers on the two longest diagonals is equal to $112$. The numbers situated symmetrically with respect to any of the longest diagonals are equal.
(a) Prove that the sum of numbers in any column is less than $1035$.
(b) Prove that the sum of numbers in any row is less than $518$.
2015 Ukraine Team Selection Test, 5
For a sequence $x_1,x_2,\ldots,x_n$ of real numbers, we define its $\textit{price}$ as \[\max_{1\le i\le n}|x_1+\cdots +x_i|.\] Given $n$ real numbers, Dave and George want to arrange them into a sequence with a low price. Diligent Dave checks all possible ways and finds the minimum possible price $D$. Greedy George, on the other hand, chooses $x_1$ such that $|x_1 |$ is as small as possible; among the remaining numbers, he chooses $x_2$ such that $|x_1 + x_2 |$ is as small as possible, and so on. Thus, in the $i$-th step he chooses $x_i$ among the remaining numbers so as to minimise the value of $|x_1 + x_2 + \cdots x_i |$. In each step, if several numbers provide the same value, George chooses one at random. Finally he gets a sequence with price $G$.
Find the least possible constant $c$ such that for every positive integer $n$, for every collection of $n$ real numbers, and for every possible sequence that George might obtain, the resulting values satisfy the inequality $G\le cD$.
[i]Proposed by Georgia[/i]
VII Soros Olympiad 2000 - 01, 8.1
If there are as many boys in the class as there are girls in the class now, the percentage of girls will decrease by $1.4$ times. Find out what percentage of the students in the class were boys.
2010 Bosnia And Herzegovina - Regional Olympiad, 1
Find all real numbers $(x,y)$ satisfying the following: $$x+\frac{3x-y}{x^2+y^2}=3$$ $$y-\frac{x+3y}{x^2+y^2}=0$$
2025 Japan MO Finals, 1
Let $n$ be an integer greater than or equal to $2$. Consider real numbers $a_1, a_2, \dots, a_{2n}$ satisfying the condition
\[
|a_k - a_{n+k}| \geqslant 1 \quad \text{for all } 1 \leqslant k \leqslant n.
\]
Determine the minimum possible value of
\[
(a_1 - a_2)^2 + (a_2 - a_3)^2 + \dots + (a_{2n-1} - a_{2n})^2 + (a_{2n} - a_1)^2.
\]
2018 Moscow Mathematical Olympiad, 4
Are there natural solution of $$a^3+b^3=11^{2018}$$ ?
2004 China Team Selection Test, 1
Given sequence $ \{ c_n \}$ satisfying the conditions that $ c_0\equal{}1$, $ c_1\equal{}0$, $ c_2\equal{}2005$, and $ c_{n\plus{}2}\equal{}\minus{}3c_n \minus{} 4c_{n\minus{}1} \plus{}2008$, ($ n\equal{}1,2,3, \cdots$). Let $ \{ a_n \}$ be another sequence such that $ a_n\equal{}5(c_{n\plus{}1} \minus{} c_n) \cdot (502 \minus{} c_{n\minus{}1} \minus{} c_{n\minus{}2}) \plus{} 4^n \times 2004 \times 501$, ($ n\equal{}2,3, \cdots$).
Is $ a_n$ a perfect square for every $ n > 2$?
1987 India National Olympiad, 2
Determine the largest number in the infinite sequence
\[ 1, \sqrt[2]{2},\sqrt[3]{3},\sqrt[4]{4}, \dots, \sqrt[n]{n},\dots\]
1985 USAMO, 5
Let $a_1,a_2,a_3,\cdots$ be a non-decreasing sequence of positive integers. For $m\ge1$, define $b_m=\min\{n: a_n \ge m\}$, that is, $b_m$ is the minimum value of $n$ such that $a_n\ge m$. If $a_{19}=85$, determine the maximum value of \[a_1+a_2+\cdots+a_{19}+b_1+b_2+\cdots+b_{85}.\]
2009 IMC, 4
Let $p(z)=a_0+a_1z+a_2z^2+\cdots+a_nz^n$ be a complex polynomial. Suppose that $1=c_0\ge c_1\ge \cdots \ge c_n\ge 0$ is a sequence of real numbers which form a convex sequence. (That is $2c_k\le c_{k-1}+c_{k+1}$ for every $k=1,2,\cdots ,n-1$ ) and consider the polynomial
\[ q(z)=c_0a_0+c_1a_1z+c_2a_2z^2+\cdots +c_na_nz^n \]
Prove that :
\[ \max_{|z|\le 1}q(z)\le \max_{|z|\le 1}p(z) \]
1991 IMO Shortlist, 29
We call a set $ S$ on the real line $ \mathbb{R}$ [i]superinvariant[/i] if for any stretching $ A$ of the set by the transformation taking $ x$ to $ A(x) \equal{} x_0 \plus{} a(x \minus{} x_0), a > 0$ there exists a translation $ B,$ $ B(x) \equal{} x\plus{}b,$ such that the images of $ S$ under $ A$ and $ B$ agree; i.e., for any $ x \in S$ there is a $ y \in S$ such that $ A(x) \equal{} B(y)$ and for any $ t \in S$ there is a $ u \in S$ such that $ B(t) \equal{} A(u).$ Determine all [i]superinvariant[/i] sets.
2025 Vietnam National Olympiad, 1
Let $P(x) = x^4-x^3+x$.
a) Prove that for all positive real numbers $a$, the polynomial $P(x) - a$ has a unique positive zero.
b) A sequence $(a_n)$ is defined by $a_1 = \dfrac{1}{3}$ and for all $n \geq 1$, $a_{n+1}$ is the positive zero of the polynomial $P(x) - a_n$. Prove that the sequence $(a_n)$ converges, and find the limit of the sequence.
2024 Canadian Mathematical Olympiad Qualification, 6
For certain real constants $ p, q, r$, we are given a system of equations
$$\begin{cases} a^2 + b + c = p \\
a + b^2 + c = q \\
a + b + c^2 = r \end{cases}$$
What is the maximum number of solutions of real triplets $(a, b, c)$ across all possible $p, q, r$? Give an example of the $p$, $q$, $r$ that achieves this maximum.
2019 Estonia Team Selection Test, 12
Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.
DMM Individual Rounds, 2009
[b]p1.[/b] Let $p > 5$ be a prime. It is known that the average of all of the prime numbers that are at least $5$ and at most $p$ is $12$. Find $p$.
[b]p2.[/b] The numbers $1, 2,..., n$ are written down in random order. What is the probability that $n-1$ and $n$ are written next to each other? (Give your answer in term of $n$.)
[b]p3.[/b] The Duke Blue Devils are playing a basketball game at home against the UNC Tar Heels. The Tar Heels score $N$ points and the Blue Devils score $M$ points, where $1 < M,N < 100$. The first digit of $N$ is $a$ and the second digit of $N$ is $b$. It is known that $N = a+b^2$. The first digit of $M$ is $b$ and the second digit of $M$ is $a$. By how many points do the Blue Devils win?
[b]p4.[/b] Let $P(x)$ be a polynomial with integer coefficients. It is known that $P(x)$ gives a remainder of $1$ upon polynomial division by $x + 1$ and a remainder of $2$ upon polynomial division by $x + 2$. Find the remainder when $P(x)$ is divided by $(x + 1)(x + 2)$.
[b]p5.[/b] Dracula starts at the point $(0,9)$ in the plane. Dracula has to pick up buckets of blood from three rivers, in the following order: the Red River, which is the line $y = 10$; the Maroon River, which is the line $y = 0$; and the Slightly Crimson River, which is the line $x = 10$. After visiting all three rivers, Dracula must then bring the buckets of blood to a castle located at $(8,5)$. What is the shortest distance that Dracula can walk to accomplish this goal?
[b]p6.[/b] Thirteen hungry zombies are sitting at a circular table at a restaurant. They have five identical plates of zombie food. Each plate is either in front of a zombie or between two zombies. If a plate is in front of a zombie, that zombie and both of its neighbors can reach the plate. If a plate is between two zombies, only those two zombies may reach it. In how many ways can we arrange the plates of food around the circle so that each zombie can reach exactly one plate of food? (All zombies are distinct.)
[b]p7.[/b] Let $R_I$ , $R_{II}$ ,$R_{III}$ ,$R_{IV}$ be areas of the elliptical region $$\frac{(x - 10)^2}{10}+ \frac{(y-31)^2}{31} \le 2009$$ that lie in the first, second, third, and fourth quadrants, respectively. Find $R_I -R_{II} +R_{III} -R_{IV}$ .
[b]p8.[/b] Let $r_1, r_2, r_3$ be the three (not necessarily distinct) solutions to the equation $x^3+4x^2-ax+1 = 0$. If $a$ can be any real number, find the minimum possible value of
$$\left(r_1 +\frac{1}{r_1} \right)^2+ \left(r_2 +\frac{1}{r_2} \right)^2+ \left(r_3 +\frac{1}{r_3} \right)^2$$
[b]p9.[/b] Let $n$ be a positive integer. There exist positive integers $1 = a_1 < a_2 <... < a_n = 2009$ such that the average of any $n - 1$ of elements of $\{a_1, a_2,..., a_n\}$ is a positive integer. Find the maximum possible value of $n$.
[b]p10.[/b] Let $A(0) = (2, 7, 8)$ be an ordered triple. For each $n$, construct $A(n)$ from $A(n - 1)$ by replacing the $k$th position in $A(n - 1)$ by the average (arithmetic mean) of all entries in $A(n - 1)$, where $k \equiv n$ (mod $3$) and $1 \le k \le 3$. For example, $A(1) = \left( \frac{17}{3} , 7, 8 \right)$ and $A(2) = \left( \frac{17}{3} , \frac{62}{9}, 8\right)$. It is known that all entries converge to the same number $N$. Find the value of $N$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2017 Greece Team Selection Test, 4
Some positive integers are initially written on a board, where each $2$ of them are different.
Each time we can do the following moves:
(1) If there are 2 numbers (written in the board) in the form $n, n+1$ we can erase them and write down $n-2$
(2) If there are 2 numbers (written in the board) in the form $n, n+4$ we can erase them and write down $n-1$
After some moves, there might appear negative numbers. Find the maximum value of the integer $c$ such that:
Independetly of the starting numbers, each number which appears in any move is greater or equal to $c$
1997 Federal Competition For Advanced Students, P2, 6
For every natural number $ n$, find all polynomials $ x^2\plus{}ax\plus{}b$, where $ a^2 \ge 4b$, that divide $ x^{2n}\plus{}ax^n\plus{}b$.
2004 Baltic Way, 5
Determine the range of the following function defined for integer $k$,
\[f(k)=(k)_3+(2k)_5+(3k)_7-6k\]
where $(k)_{2n+1}$ denotes the multiple of $2n+1$ closest to $k$
2020 Brazil Team Selection Test, 2
Let $m$ be a positive integer. Find the number of real solutions of the equation
$$|\sum_{k=0}^{m} \binom{2m}{2k}x^k|=|x-1|^m$$