This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1976 Kurschak Competition, 3

Prove that if the quadratic $x^2 +ax+b$ is always positive (for all real $x$) then it can be written as the quotient of two polynomials whose coefficients are all positive.

2021 CMIMC, 1.8

There are integers $v,w,x,y,z$ and real numbers $0\le \theta < \theta' \le \pi$ such that $$\cos 3\theta = \cos 3\theta' = v^{-1}, \qquad w+x\cos \theta + y\cos 2\theta = z\cos \theta'.$$ Given that $z\ne 0$ and $v$ is positive, find the sum of the $4$ smallest possible values of $v$. [i]Proposed by Vijay Srinivasan[/i]

2019 Brazil Team Selection Test, 3

Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.

1965 All Russian Mathematical Olympiad, 065

Quasi-rounding is a substitution one of the two closest integers instead of the given number. Given $n$ numbers. Prove that you can quasi-round them in such a way, that a sum of every subset of quasi-rounded numbers will deviate from the sum of the same subset of initial numbers not greater than $(n+1)/4$ .

2019 LIMIT Category C, Problem 7

Tags: algebra , summation
The value of $$\left(1+\frac26+\frac{2\cdot5}{6\cdot12}+\frac{2\cdot5\cdot8}{6\cdot12\cdot18}+\ldots\right)^3$$

2005 Taiwan TST Round 1, 1

Let $f(x)=Ax^2+Bx+C$, $g(x)=ax^2+bx+c$ be two quadratic polynomial functions with real coefficients that satisfy the relation \[|f(x)| \ge |g(x)|\] for all real $x$. Prove that $|b^2-4ac| \le |B^2-4AC|.$ My solution was nearly complete...

1965 Leningrad Math Olympiad, grade 7

[b]7.1[/b] Prove that a natural number with an odd number of divisors is a perfect square. [b]7.2[/b] In a triangle $ABC$ with area $S$, medians $AK$ and $BE$ are drawn, intersecting at the point $O$. Find the area of the quadrilateral $CKOE$. [img]https://cdn.artofproblemsolving.com/attachments/0/f/9cd32bef4f4459dc2f8f736f7cc9ca07e57d05.png[/img] [b]7.3 .[/b] The front tires of a car wear out after $25,000$ kilometers, and the rear tires after $15,000$ kilometers. When you need to swap tires so that the car can travel the longest possible distance with the same tires? [b]7.4 [/b] A $24 \times 60$ rectangle is divided by lines parallel to it sides, into unit squares. How many parts will this rectangle be divided into if you also draw a diagonal in it? [b]7.5 / 8.4[/b] Let $ [A]$ denote the largest integer not greater than $A$. Solve the equation: $[(5 + 6x)/8] = (15x-7)/5$ . [b]7.6[/b] Black paint was sprayed onto a white surface. Prove that there are two points of the same color, the distance between which is $1965$ meters. PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988081_1965_leningrad_math_olympiad]here[/url].

1976 IMO Shortlist, 7

Let $I = (0, 1]$ be the unit interval of the real line. For a given number $a \in (0, 1)$ we define a map $T : I \to I$ by the formula if \[ T (x, y) = \begin{cases} x + (1 - a),&\mbox{ if } 0< x \leq a,\\ \text{ } \\ x - a, & \mbox{ if } a < x \leq 1.\end{cases} \] Show that for every interval $J \subset I$ there exists an integer $n > 0$ such that $T^n(J) \cap J \neq \emptyset.$

2013 Online Math Open Problems, 30

Let $P(t) = t^3+27t^2+199t+432$. Suppose $a$, $b$, $c$, and $x$ are distinct positive reals such that $P(-a)=P(-b)=P(-c)=0$, and \[ \sqrt{\frac{a+b+c}{x}} = \sqrt{\frac{b+c+x}{a}} + \sqrt{\frac{c+a+x}{b}} + \sqrt{\frac{a+b+x}{c}}. \] If $x=\frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute $m+n$. [i]Proposed by Evan Chen[/i]

1989 IMO Longlists, 37

There are n cars waiting at distinct points of a circular race track. At the starting signal each car starts. Each car may choose arbitrarily which of the two possible directions to go. Each car has the same constant speed. Whenever two cars meet they both change direction (but not speed). Show that at some time each car is back at its starting point.

1999 All-Russian Olympiad Regional Round, 11.5

Are there real numbers $a, b$ and $c$ such that for all real $x$ and $y$ the following inequality holds: $$|x + a| + |x + y + b| + |y + c| > |x| + |x + y| + |y|?$$

2006 Iran Team Selection Test, 4

Let $n$ be a fixed natural number. Find all $n$ tuples of natural pairwise distinct and coprime numbers like $a_1,a_2,\ldots,a_n$ such that for $1\leq i\leq n$ we have \[ a_1+a_2+\ldots+a_n|a_1^i+a_2^i+\ldots+a_n^i \]

2017 Estonia Team Selection Test, 2

Tags: algebra
Find the smallest constant $C > 0$ for which the following statement holds: among any five positive real numbers $a_1,a_2,a_3,a_4,a_5$ (not necessarily distinct), one can always choose distinct subscripts $i,j,k,l$ such that \[ \left| \frac{a_i}{a_j} - \frac {a_k}{a_l} \right| \le C. \]

1999 Austrian-Polish Competition, 6

Solve in the nonnegative real numbers the system of equations $$\begin{cases} x_n^2 + x_nx_{n-1} + x_{n-1}^4 = 1 \,\,\,\, for \,\,\,\, n = 1,2,..., 1999 \\\ x_0 = x_{1999} \end{cases}$$

2019 Saudi Arabia Pre-TST + Training Tests, 1.1

Suppose that $x, y, z$ are non-zero real numbers such that $$\begin{cases}x = 2 - \dfrac{y}{z} \\ \\ y = 2 -\dfrac{z}{x} \\ \\ z = 2 -\dfrac{x}{y}.\end{cases}$$ Find all possible values of $T = x + y + z$

1974 All Soviet Union Mathematical Olympiad, 194

Tags: algebra , equation
Find all the real $a,b,c$ such that the equality $$|ax+by+cz| + |bx+cy+az| + |cx+ay+bz| = |x|+|y|+|z|$$ is valid for all the real $x,y,z$.

2010 Contests, 2

Tags: algebra
Let $(a_n), (b_n)$, $n = 1,2,...$ be two sequences of integers defined by $a_1 = 1, b_1 = 0$ and for $n \geq 1$ $a_{n+1} = 7a_n + 12b_n + 6$ $b_{n+1} = 4a_n + 7b_n + 3$ Prove that $a_n^2$ is the difference of two consecutive cubes.

1968 IMO Shortlist, 1

Two ships sail on the sea with constant speeds and fixed directions. It is known that at $9:00$ the distance between them was $20$ miles; at $9:35$, $15$ miles; and at $9:55$, $13$ miles. At what moment were the ships the smallest distance from each other, and what was that distance ?

2008 ITest, 80

Let \[p(x)=x^{2008}+x^{2007}+x^{2006}+\cdots+x+1,\] and let $r(x)$ be the polynomial remainder when $p(x)$ is divided by $x^4+x^3+2x^2+x+1$. Find the remainder when $|r(2008)|$ is divided by $1000$.

2007 China Team Selection Test, 2

Find all positive integers $ n$ such that there exists sequence consisting of $ 1$ and $ - 1: a_{1},a_{2},\cdots,a_{n}$ satisfying $ a_{1}\cdot1^2 + a_{2}\cdot2^2 + \cdots + a_{n}\cdot n^2 = 0.$

1966 German National Olympiad, 4

Determine all ordered quadruples of real numbers $(x_1, x_2, x_3, x_4)$ for which the following system of equations exists, is fulfilled: $$x_1x_2 + x_1x_3 + x_2x_3 + x_4 = 2$$ $$x_1x_2 + x_1x_4 + x_2x_4 + x_3 = 2$$ $$x_1x_3 + x_1x_4 + x_3x_4 + x_2 = 2$$ $$x_2x_3 + x_2x_4 + x_3x_4 + x_1 = 2$$

2005 Croatia National Olympiad, 1

Tags: algebra , limit
A sequence $(a_{n})$ is defined by $a_{1}= 1$ and $a_{n}= a_{1}a_{2}...a_{n-1}+1$ for $n \geq 2.$ Find the smallest real number $M$ such that $\sum_{n=1}^{m}\frac{1}{a_{n}}<M\; \forall m\in\mathbb{N}$.

1985 Traian Lălescu, 1.3

Find all functions $ f:\mathbb{Q}\longrightarrow\mathbb{Q} $ with the property that $$ f\left( p(x)\right) =p\left( f(x)\right) ,\quad\forall x\in\mathbb{Q} , $$ for all integer polynomials $ p. $

2010 Math Hour Olympiad, 6-7

[u]Round 1[/u] [b]p1.[/b] Is it possible to draw some number of diagonals in a convex hexagon so that every diagonal crosses EXACTLY three others in the interior of the hexagon? (Diagonals that touch at one of the corners of the hexagon DO NOT count as crossing.) [b]p2.[/b] A $ 3\times 3$ square grid is filled with positive numbers so that (a) the product of the numbers in every row is $1$, (b) the product of the numbers in every column is $1$, (c) the product of the numbers in any of the four $2\times 2$ squares is $2$. What is the middle number in the grid? Find all possible answers and show that there are no others. [b]p3.[/b] Each letter in $HAGRID$'s name represents a distinct digit between $0$ and $9$. Show that $$HAGRID \times H \times A\times G\times R\times I\times D$$ is divisible by $3$. (For example, if $H=1$, $A=2$, $G=3$, $R = 4$, $I = 5$, $D = 64$, then $HAGRID \times H \times A\times G\times R\times I\times D= 123456\times 1\times2\times3\times4\times5\times 6$). [b]p4.[/b] You walk into a room and find five boxes sitting on a table. Each box contains some number of coins, and you can see how many coins are in each box. In the corner of the room, there is a large pile of coins. You can take two coins at a time from the pile and place them in different boxes. If you can add coins to boxes in this way as many times as you like, can you guarantee that each box on the table will eventually contain the same number of coins? [b]p5.[/b] Alex, Bob and Chad are playing a table tennis tournament. During each game, two boys are playing each other and one is resting. In the next game the boy who lost a game goes to rest, and the boy who was resting plays the winner. By the end of tournament, Alex played a total of $10$ games, Bob played $15$ games, and Chad played $17$ games. Who lost the second game? [u]Round 2[/u] [b]p6.[/b] After going for a swim in his vault of gold coins, Scrooge McDuck decides he wants to try to arrange some of his gold coins on a table so that every coin he places on the table touches exactly three others. Can he possibly do this? You need to justify your answer. (Assume the gold coins are circular, and that they all have the same size. Coins must be laid at on the table, and no two of them can overlap.) [b]p7.[/b] You have a deck of $50$ cards, each of which is labeled with a number between $1$ and $25$. In the deck, there are exactly two cards with each label. The cards are shuffled and dealt to $25$ students who are sitting at a round table, and each student receives two cards. The students will now play a game. On every move of the game, each student takes the card with the smaller number out of his or her hand and passes it to the person on his/her right. Each student makes this move at the same time so that everyone always has exactly two cards. The game continues until some student has a pair of cards with the same number. Show that this game will eventually end. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2004 Nicolae Coculescu, 2

Let be a natural number $ n\ge 2. $ Find the real numbers $ a $ that satisfy the equation $$ \lfloor nx \rfloor =\sum_{k=1}^{n} \lfloor x+(k-1)a \rfloor , $$ for any real numbers $ x. $ [i]Marius Perianu[/i]