Found problems: 15925
2019 India PRMO, 14
Let $\mathcal{R}$ denote the circular region in the $xy-$plane bounded by the circle $x^2+y^2=36$. The lines $x=4$ and $y=3$ divide $\mathcal{R}$ into four regions $\mathcal{R}_i ~ , ~i=1,2,3,4$. If $\mid \mathcal{R}_i \mid$ denotes the area of the region $\mathcal{R}_i$ and if $\mid \mathcal{R}_1 \mid >$ $\mid \mathcal{R}_2 \mid >$ $\mid \mathcal{R}_3 \mid > $ $\mid \mathcal{R}_4 \mid $, determine $\mid \mathcal{R}_1 \mid $ $-$ $\mid \mathcal{R}_2 \mid $ $-$ $\mid \mathcal{R}_3 \mid $ $+$ $\mid \mathcal{R}_4 \mid $.
2011 Middle European Mathematical Olympiad, 1
Find all functions $f : \mathbb R \to \mathbb R$ such that the equality
\[y^2f(x) + x^2f(y) + xy = xyf(x + y) + x^2 + y^2\]
holds for all $x, y \in \Bbb R$, where $\Bbb R$ is the set of real numbers.
1969 German National Olympiad, 1
Every nonnegative periodic decimal fraction represents a rational number, also in the form $\frac{p}{q}$ can be represented ($p$ and $q$ are natural numbers and coprime, $p\ge 0$, $q > 0)$. Now let $a_1$, $a_2$, $a_3$ and $a_4$ be digits to represent numbers in the decadic system. Let $a_1 \ne a_3$ or $a_2 \ne a_4$.Prove that it for the numbers:
$z_1 = 0, \overline{a_1a_2a_3a_4} = 0,a_1a_2a_3a_4a_1a_2a_3a_4...$
$z_2 = 0, \overline{a_4a_1a_2a_3}$
$z_3 = 0, \overline{a_3a_4a_1a_2}$
$z_4 = 0, \overline{a_2a_3a_4a_1}$
In the above representation $p/q$ always have the same denominator.
[hide=original wording]Jeder nichtnegative periodische Dezimalbruch repr¨asentiert eine rationale Zahl, die auch in der Form p/q dargestellt werden kann (p und q nat¨urliche Zahlen und teilerfremd, p >= 0, q > 0).
Nun seien a1, a2, a3 und a4 Ziffern zur Darstellung von Zahlen im dekadischen System. Dabei sei a1 $\ne$ a3 oder a2 $\ne$ a4. Beweisen Sie! Die Zahlen
z1 = 0, a1a2a3a4 = 0,a1a2a3a4a1a2a3a4...
z2 = 0, a4a1a2a3
z3 = 0, a3a4a1a2
z4 = 0, a2a3a4a1
haben in der obigen Darstellung p/q stets gleiche Nenner.[/hide]
2018 VJIMC, 3
Let $n$ be a positive integer and let $x_1,\dotsc,x_n$ be positive real numbers satisfying $\vert x_i-x_j\vert \le 1$ for all pairs $(i,j)$ with $1 \le i<j \le n$. Prove that
\[\frac{x_1}{x_2}+\frac{x_2}{x_3}+\dots+\frac{x_{n-1}}{x_n}+\frac{x_n}{x_1} \ge \frac{x_2+1}{x_1+1}+\frac{x_3+1}{x_2+1}+\dots+\frac{x_n+1}{x_{n-1}+1}+\frac{x_1+1}{x_n+1}.\]
EMCC Guts Rounds, 2019
[u]Round 1[/u]
[b]p1.[/b] What is the smallest number equal to its cube?
[b]p2.[/b] Fhomas has $5$ red spaghetti and $5$ blue spaghetti, where spaghetti are indistinguishable except for color. In how many different ways can Fhomas eat $6$ spaghetti, one after the other? (Two ways are considered the same if the sequence of colors are identical)
[b]p3.[/b] Jocelyn labels the three corners of a triangle with three consecutive natural numbers. She then labels each edge with the sum of the two numbers on the vertices it touches, and labels the center with the sum of all three edges. If the total sum of all labels on her triangle is $120$, what is the value of the smallest label?
[u]Round 2[/u]
[b]p4.[/b] Adam cooks a pie in the shape of a regular hexagon with side length $12$, and wants to cut it into right triangular pieces with angles $30^o$, $60^o$, and $90^o$, each with shortest side $3$. What is the maximum number of such pieces he can make?
[b]p5.[/b] If $f(x) =\frac{1}{2-x}$ and $g(x) = 1-\frac{1}{x}$ , what is the value of $f(g(f(g(... f(g(f(2019))) ...))))$, where there are $2019$ functions total, counting both $f$ and $g$?
[b]p6.[/b] Fhomas is buying spaghetti again, which is only sold in two types of boxes: a $200$ gram box and a $500$ gram box, each with a fixed price. If Fhomas wants to buy exactly $800$ grams, he must spend $\$8:80$, but if he wants to buy exactly 900 grams, he only needs to spend $\$7:90$! In dollars, how much more does the $500$ gram box cost than the $200$ gram box?
[u]Round 3[/u]
[b]p7.[/b] Given that $$\begin{cases} a + 5b + 9c = 1 \\ 4a + 2b + 3c = 2 \\ 7a + 8b + 6c = 9\end{cases}$$ what is $741a + 825b + 639c$?
[b]p8.[/b] Hexagon $JAMESU$ has line of symmetry $MU$ (i.e., quadrilaterals $JAMU$ and $SEMU$ are reflections of each other), and $JA = AM = ME = ES = 1$. If all angles of $JAMESU$ are $135$ degrees except for right angles at $A$ and $E$, find the length of side $US$.
[b]p9.[/b] Max is parked at the $11$ mile mark on a highway, when his pet cheetah, Min, leaps out of the car and starts running up the highway at its maximum speed. At the same time, Max starts his car and starts driving down the highway at $\frac12$ his maximum speed, driving all the way to the $10$ mile mark before realizing that his cheetah is gone! Max then immediately reverses directions and starts driving back up the highway at his maximum speed, nally catching up to Min at the $20$ mile mark. What is the ratio between Max's max speed and Min's max speed?
[u]Round 4[/u]
[b]p10.[/b] Kevin owns three non-adjacent square plots of land, each with side length an integer number of meters, whose total area is $2019$ m$^2$. What is the minimum sum of the perimeters of his three plots, in meters?
[b]p11.[/b] Given a $5\times 5$ array of lattice points, how many squares are there with vertices all lying on these points?
[b]p12.[/b] Let right triangle $ABC$ have $\angle A = 90^o$, $AB = 6$, and $AC = 8$. Let points $D,E$ be on side $AC$ such that $AD = EC = 2$, and let points $F,G$ be on side $BC$ such that $BF = FG = 3$. Find the area of quadrilateral $FGED$.
PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2949413p26408203]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1999 IMC, 1
a) Show that $\forall n \in \mathbb{N}_0, \exists A \in \mathbb{R}^{n\times n}: A^3=A+I$.
b) Show that $\det(A)>0, \forall A$ fulfilling the above condition.
2009 India IMO Training Camp, 9
Let
$ f(x)\equal{}\sum_{k\equal{}1}^n a_k x^k$ and $ g(x)\equal{}\sum_{k\equal{}1}^n \frac{a_k x^k}{2^k \minus{}1}$ be two polynomials with real coefficients.
Let g(x) have $ 0,2^{n\plus{}1}$ as two of its roots. Prove That $ f(x)$ has a positive root less than $ 2^n$.
2014 ELMO Shortlist, 4
Find all triples $(f,g,h)$ of injective functions from the set of real numbers to itself satisfying
\begin{align*}
f(x+f(y)) &= g(x) + h(y) \\
g(x+g(y)) &= h(x) + f(y) \\
h(x+h(y)) &= f(x) + g(y)
\end{align*}
for all real numbers $x$ and $y$. (We say a function $F$ is [i]injective[/i] if $F(a)\neq F(b)$ for any distinct real numbers $a$ and $b$.)
[i]Proposed by Evan Chen[/i]
2006 AMC 12/AHSME, 17
Square $ ABCD$ has side length $ s$, a circle centered at $ E$ has radius $ r$, and $ r$ and $ s$ are both rational. The circle passes through $ D$, and $ D$ lies on $ \overline{BE}$. Point $ F$ lies on the circle, on the same side of $ \overline{BE}$ as $ A$. Segment $ AF$ is tangent to the circle, and $ AF \equal{} \sqrt {9 \plus{} 5\sqrt {2}}$. What is $ r/s$?
[asy]unitsize(6mm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
dotfactor=3;
pair B=(0,0), C=(3,0), D=(3,3), A=(0,3);
pair Ep=(3+5*sqrt(2)/6,3+5*sqrt(2)/6);
pair F=intersectionpoints(Circle(A,sqrt(9+5*sqrt(2))),Circle(Ep,5/3))[0];
pair[] dots={A,B,C,D,Ep,F};
draw(A--F);
draw(Circle(Ep,5/3));
draw(A--B--C--D--cycle);
dot(dots);
label("$A$",A,NW);
label("$B$",B,SW);
label("$C$",C,SE);
label("$D$",D,SW);
label("$E$",Ep,E);
label("$F$",F,NW);[/asy]$ \textbf{(A) } \frac {1}{2}\qquad \textbf{(B) } \frac {5}{9}\qquad \textbf{(C) } \frac {3}{5}\qquad \textbf{(D) } \frac {5}{3}\qquad \textbf{(E) } \frac {9}{5}$
2003 China Second Round Olympiad, 2
Let the three sides of a triangle be $\ell, m, n$, respectively, satisfying $\ell>m>n$ and $\left\{\frac{3^\ell}{10^4}\right\}=\left\{\frac{3^m}{10^4}\right\}=\left\{\frac{3^n}{10^4}\right\}$, where $\{x\}=x-\lfloor{x}\rfloor$ and $\lfloor{x}\rfloor$ denotes the integral part of the number $x$. Find the minimum perimeter of such a triangle.
2012 Mathcenter Contest + Longlist, 4
Let $a,b,c$ be the side lengths of any triangle. Prove that $$\frac{a}{\sqrt{2b^2+2c^2-a^2}}+\frac{b}{\sqrt{2c^2+2a^2-b^2 }}+\frac{c}{\sqrt{2a^2+2b^2-c^2}}\ge \sqrt{3}.$$
[i](Zhuge Liang)[/i]
2007 Ukraine Team Selection Test, 8
$ F(x)$ is polynomial with real coefficients. $ F(x) \equal{} x^{4}\plus{}a_{1}x^{3}\plus{}a_{2}x^{2}\plus{}a_{1}x^{1}\plus{}a_{0}$. $ M$ is local maximum and $ m$ is minimum. Prove that $ \frac{3}{10}(\frac{a_{1}^{2}}{4}\minus{}\frac{2a_{2}}{3^{2}})^{2}< M\minus{}m < 3(\frac{a_{1}^{2}}{4}\minus{}\frac{2a_{2}}{3^{2}})^{2}$
2021 Argentina National Olympiad, 6
Decide if it is possible to choose $330$ points in the plane so that among all the distances that are formed between two of them there are at least $1700$ that are equal.
Mid-Michigan MO, Grades 5-6, 2009
[b]p1.[/b] Anne purchased yesterday at WalMart in Puerto Rico $6$ identical notebooks, $8$ identical pens and $7$ identical erasers. Anne remembers that each eraser costs $73$ cents. She did not buy anything else. Anne told her mother that she spent $12$ dollars and $76$ cents at Walmart. Can she be right? Note that in Puerto Rico there is no sales tax.
[b]p2.[/b] Two men ski one after the other first in a flat field and then uphill. In the field the men run with the same velocity $12$ kilometers/hour. Uphill their velocity drops to $8$ kilometers/hour. When both skiers enter the uphill trail segment the distance between them is $300$ meters less than the initial distance in the field. What was the initial distance between skiers? (There are $1000$ meters in 1 kilometer.)
[b]p3.[/b] In the equality $** + **** = ****$ all the digits are replaced by $*$. Restore the equality if it is known that any numbers in the equality does not change if we write all its digits in the opposite order.
[b]p4.[/b] If a polyleg has even number of legs he always tells truth. If he has an odd number of legs he always lies. Once a green polyleg told a dark-blue polyleg ”- I have $8$ legs. And you have only $6$ legs!” The offended dark-blue polyleg replied ”-It is me who has $8$ legs, and you have only $7$ legs!” A violet polyleg added ”-The dark-blue polyleg indeed has $8$ legs. But I have $9$ legs!” Then a stripped polyleg started: ”-None of you has $8$ legs. Only I have 8 legs!” Which polyleg has exactly $8$ legs?
[b]p5.[/b] Cut the figure shown below in two equal pieces. (Both the area and the form of the pieces must be the same.) [img]https://cdn.artofproblemsolving.com/attachments/e/4/778678c1e8748e213ffc94ba71b1f3cc26c028.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1941 Putnam, A1
Prove that the polynomial
$$(a-x)^6 -3a(a-x)^5 +\frac{5}{2} a^2 (a-x)^4 -\frac{1}{2} a^4 (a-x)^2 $$
takes only negative values for $0<x<a$.
IV Soros Olympiad 1997 - 98 (Russia), grade7
[b]p1.[/b] In the correct identity $(x^2 - 1)(x + ...) = (x + 3)(x- 1)(x +...)$ two numbers were replaced with dots. What were these numbers?
[b]p2.[/b] A merchant is carrying money from point A to point B. There are robbers on the roads who rob travelers: on one road the robbers take $10\%$ of the amount currently available, on the other - $20\%$, etc. . How should the merchant travel to bring as much of the money as possible to B? What part of the original amount will he bring to B?
[img]https://cdn.artofproblemsolving.com/attachments/f/5/ab62ce8fce3d482bc52b89463c953f4271b45e.png[/img]
[b]p3.[/b] Find the angle between the hour and minute hands at $7$ hours $38$ minutes.
[b]p4.[/b] The lottery game is played as follows. A random number from $1$ to $1000$ is selected. If it is divisible by $2$, they pay a ruble, if it is divisible by $10$ - two rubles, by $12$ - four rubles, by $20$ - eight, if it is divisible by several of these numbers, then they pay the sum. How much can you win (at one time) in such a game? List all options.
[b]p5.[/b]The sum of the digits of a positive integer $x$ is equal to $n$. Prove that between $x$ and $10x$ you can find an integer whose sum of digits is $ n + 5$.
[b]p6.[/b] $9$ people took part in the campaign, which lasted $12$ days. There were $3$ people on duty every day. At the same time, the duty officers quarreled with each other and no two of them wanted to be on duty together ever again. Nevertheless, the participants of the campaign claim that for all $12$ days they were able to appoint three people on duty, taking into account this requirement. Could this be so?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]
1997 IMO Shortlist, 12
Let $ p$ be a prime number and $ f$ an integer polynomial of degree $ d$ such that $ f(0) = 0,f(1) = 1$ and $ f(n)$ is congruent to $ 0$ or $ 1$ modulo $ p$ for every integer $ n$. Prove that $ d\geq p - 1$.
2022 China Northern MO, 3
Let $\{a_n\}$ be a sequence of positive terms such that $a_{n+1}=a_n+ \frac{n^2}{a_n}$ . Let $b_n =a_n-n$ .
(1) Are there infinitely many $n$ such that $b_n \ge 0$ ?
(2) Prove that there is a positive number $M$ such that $\sum^{\infty}_{n=3} \frac{b_n}{n+1}<M$.
2012 USAMTS Problems, 5
Let $P$ and $Q$ be two polynomials with real coeficients such that $P$ has degree greater than $1$ and \[P(Q(x)) = P(P(x)) + P(x).\]Show that $P(-x) = P(x) + x$.
2009 Italy TST, 1
Let $n$ be an even positive integer. An $n$-degree monic polynomial $P(x)$ has $n$ real roots (not necessarily distinct). Suppose $y$ is a positive real number such that for any real number $t<y$, we have $P(t)>0$. Prove that
\[P(0)^{\frac{1}{n}}-P(y)^{\frac{1}{n}}\ge y.\]
1995 Swedish Mathematical Competition, 3
Let $a,b,x,y$ be positive numbers with $a+b+x+y < 2$. Given that $$\begin{cases} a+b^2 = x+y^2 \\ a^2 +b = x^2 +y\end {cases} $$ show that $a = x$ and $b = y$
2014 District Olympiad, 4
Find all functions $f:\mathbb{Q}\to \mathbb{Q}$ such that
\[ f(x+3f(y))=f(x)+f(y)+2y \quad \forall x,y\in \mathbb{Q}\]
2022 Saint Petersburg Mathematical Olympiad, 6
Find all pairs of nonzero rational numbers $x, y$, such that every positive rational number can be written as $\frac{\{rx\}} {\{ry\}}$ for some positive rational $r$.
1992 Tournament Of Towns, (351) 3
We are given a finite number of functions of the form $y = c2^{-|x-d|}$. In each case $c$ and $d$ are parameters with $c > 0$. The function $f(x)$ is defined on the interval $[a, b]$ as follows: For each $x$ in $[a, b]$, $f(x)$ is the maximum value taken by any of the given functions $y$ (defined above) at that point $x$. It is known that $f(a) = f(b)$. Prove that the total length of the intervals in which the function $f$ is increasing is equal to the total length of the intervals in which it is decreasing (that is, both are equal to $(b- a)/2$ ).
(NB Vasiliev)
2010 Switzerland - Final Round, 4
Let $ x$, $ y$, $ z \in\mathbb{R}^+$ satisfying $ xyz = 1$. Prove that
\[ \frac {(x + y - 1)^2}{z} + \frac {(y + z - 1)^2}{x} + \frac {(z + x - 1)^2}{y}\geqslant x + y + z\mbox{.}\]