Found problems: 15925
1983 Bundeswettbewerb Mathematik, 4
Let $f(0), f(1), f(2), \dots$ be a sequence satisfying \[ f(0) = 0 \quad \text{and} \quad f(n) = n - f(f(n-1)) \] for $n=1,2,3,\dots$. Give a formula for $f(n)$ such that its value can be immediately computed using $n$ without having to compute the previous terms.
2019 MMATHS, 4
The continuous function $f(x)$ satisfies $c^2f(x + y) = f(x)f(y)$ for all real numbers $x$ and $y,$ where $c > 0$ is a constant. If $f(1) = c$, find $f(x)$ (with proof).
1989 IMO Longlists, 17
Let $ a \in \mathbb{R}, 0 < a < 1,$ and $ f$ a continuous function on $ [0, 1]$ satisfying $ f(0) \equal{} 0, f(1) \equal{} 1,$ and
\[ f \left( \frac{x\plus{}y}{2} \right) \equal{} (1\minus{}a) f(x) \plus{} a f(y) \quad \forall x,y \in [0,1] \text{ with } x \leq y.\]
Determine $ f \left( \frac{1}{7} \right).$
2022 VN Math Olympiad For High School Students, Problem 6
Given [i]Fibonacci[/i] sequence $(F_n),$ and a positive integer $m$, denote $k(m)$ by the smallest positive integer satisfying $F_{n+k(m)}\equiv F_n(\bmod m),$ for all natural numbers $n$, $p$ is an odd prime such that $p \equiv \pm 1(\bmod 5)$. Prove that:
a) ${F_{p + 1}} \equiv 0(\bmod p).$
b) $k(p)|2p+2.$
c) $k(p)$ is divisible by $4.$
2024 Nordic, 1
Let $T(a)$ be the sum of digits of $a$. For which positive integers $R$ does there exist a positive
integer $n$ such that $\frac{T(n^2)}{T(n)}=R$?
1989 IMO Longlists, 98
Let $ A$ be an $ n \times n$ matrix whose elements are non-negative real numbers. Assume that $ A$ is a non-singular matrix and all elements of $ A^{\minus{}1}$ are non-negative real numbers. Prove that every row and every column of $ A$ has exactly one non-zero element.
2000 Korea Junior Math Olympiad, 6
$x, y, z$ are positive reals which their product is not smaller then their sum. Prove the inequality:
$$\sqrt{2x^2+yz}+\sqrt{2y^2+zx}+\sqrt{2z^2+xy} \geq 9$$
2019 Slovenia Team Selection Test, 2
Determine all non-negative real numbers $a$, for which $f(a)=0$ for all functions $f: \mathbb{R}_{\ge 0}\to \mathbb{R}_{\ge 0} $, who satisfy the equation $f(f(x) + f(y)) = yf(1 + yf(x))$ for all non-negative real numbers $x$ and $y$.
2019 Saudi Arabia JBMO TST, 1
Real nonzero numbers $x, y, z$ are such that $x+y +z = 0$. Moreover, it is known that $$A =\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{x}{z}+\frac{z}{y}+\frac{y}{x}+ 1$$Determine $A$.
LMT Guts Rounds, 2023 S
[u]Round 6 [/u]
[b]p16.[/b] Triangle $ABC$ with $AB < AC$ is inscribed in a circle. Point $D$ lies on the circle and point $E$ lies on side $AC$ such that $ABDE$ is a rhombus. Given that $CD = 4$ and $CE = 3$, compute $AD^2$.
[b]p17.[/b] Wam and Sang are walking on the coordinate plane. Both start at the origin. Sang walks to the right at a constant rate of $1$ m/s. At any positive time $t$ (in seconds),Wam walks with a speed of $1$ m/s with a direction of $t$ radians clockwise of the positive $x$-axis. Evaluate the square of the distance betweenWamand Sang in meters after exactly $5\pi$ seconds.
[b]p18.[/b] Mawile is playing a game against Salamance. Every turn,Mawile chooses one of two moves: Sucker Punch or IronHead, and Salamance chooses one of two moves: Dragon Dance or Earthquake. Mawile wins if the moves used are Sucker Punch and Earthquake, or Iron Head and Dragon Dance. Salamance wins if the moves used are Iron Head and Earthquake. If the moves used are Sucker Punch and Dragon Dance, nothing happens and a new turn begins. Mawile can only use Sucker Punch up to $8$ times. All other moves can be used indefinitely. Assuming bothMawile and Salamance play optimally, find the probability thatMawile wins.
[u]Round 7 [/u]
[b]p19.[/b] Ephram is attempting to organize what rounds everyone is doing for the NEAML competition. There are $4$ rounds, of which everyone must attend exactly $2$. Additionally, of the 6 people on the team(Ephram,Wam, Billiam, Hacooba,Matata, and Derke), exactly $3$ must attend every round. In how many different ways can Ephram organize the teams like this?
[b]p20.[/b] For some $4$th degree polynomial $f (x)$, the following is true:
$\bullet$ $f (-1) = 1$.
$\bullet$ $f (0) = 2$.
$\bullet$ $f (1) = 4$.
$\bullet$ $f (-2) = f (2) = f (3)$.
Find $f (4)$.
[b]p21.[/b] Find the minimum value of the expression $\sqrt{5x^2-16x +16}+\sqrt{5x^2-18x +29}$ over all real $x$.
[u]Round 8 [/u]
[b]p22.[/b] Let $O$ and $I$ be the circumcenter and incenter, respectively, of $\vartriangle ABC$ with $AB = 15$, $BC = 17$, and $C A = 16$. Let $X \ne A$ be the intersection of line $AI$ and the circumcircle of $\vartriangle ABC$. Find the area of $\vartriangle IOX$.
[b]p23.[/b] Find the sum of all integers $x$ such that there exist integers $y$ and $z$ such that $$x^2 + y^2 = 3(2016^z )+77.$$
[b]p24.[/b] Evaluate $$ \left \lfloor \sum^{2022}_{i=1} \frac{1}{\sqrt{i}} \right \rfloor = \left \lfloor \frac{1}{\sqrt{1}} +\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+ \frac{1}{\sqrt{2022}}\right \rfloor$$
[u]Round 9[/u]
[b]p25.[/b]Either:
1. Submit $-2$ as your answer and you’ll be rewarded with two points OR
2. Estimate the number of teams that choose the first option. If your answer is within $1$ of the correct answer, you’ll be rewarded with three points, and if you are correct, you’ll receive ten points.
[b]p26.[/b] Jeff is playing a turn-based game that starts with a positive integer $n$.
Each turn, if the current number is $n$, Jeff must choose one of the following:
1. The number becomes the nearest perfect square to $n$
2. The number becomes $n-a$, where $a$ is the largest digit in $n$
Let $S(k)$ be the least number of turns Jeff needs to get from the starting number $k$ to $0$. Estimate $$\sum^{2023}_{k=1}S(k).$$ If your estimation is $E$ and the actual answer is $A$, you will receive $\max \left( \left \lfloor 10 - \left| \frac{E-A}{6000} \right| \right \rfloor , 0 \right)$ points.
[b]p27.[/b] Estimate the smallest positive integer n such that if $N$ is the area of the $n$-sided regular polygon with circumradius $100$, $10000\pi -N < 1$ is true.
If your estimation is $E$ and the actual answer is $A$, you will receive $ \max \left \lfloor \left( 10 - \left| 10 \cdot \log_3 \left( \frac{A}{E}\right) \right|\right| ,0\right \rfloor.$ points.
PS. You should use hide for answers. Rounds 1-5 have been posted [url=https://artofproblemsolving.com/community/c3h3167360p28825713]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1994 Tournament Of Towns, (427) 4
From the sequence $1,\frac12, \frac13, ...$ can one choose
(a) a subsequence of $100$ different numbers,
(b) an infinite subsequence
such that each number (beginning from the third) is equal to the difference between the two preceding numbers ($a_k=a_{k-2}-a_{k-1}$)?
(SI Tokarev)
2014 Harvard-MIT Mathematics Tournament, 12
Find a nonzero monic polynomial $P(x)$ with integer coefficients and minimal degree such that $P(1-\sqrt[3]2+\sqrt[3]4)=0$. (A polynomial is called $\textit{monic}$ if its leading coefficient is $1$.)
2012 May Olympiad, 1
Pablo says: “I add $2$ to my birthday and multiply the result by $2$. I add to the number obtained $4$ and multiply the result by $5$. To the new number obtained I add the number of the month of my birthday (for example, if it's June, I add $6$) and I get $342$. "
What is Pablo's birthday date? Give all the possibilities
1987 Austrian-Polish Competition, 2
Let $n$ be the square of an integer whose each prime divisor has an even number of decimal digits. Consider $P(x) = x^n - 1987x$. Show that if $x,y$ are rational numbers with $P(x) = P(y)$, then $x = y$.
1999 Singapore Team Selection Test, 2
Find all possible values of $$ \lfloor \frac{x - p}{p} \rfloor + \lfloor \frac{-x-1}{p} \rfloor $$ where $x$ is a real number and $p$ is a nonzero integer.
Here $\lfloor z \rfloor$ denotes the greatest integer less than or equal to $z$.
2013 Stanford Mathematics Tournament, 7
Find all real $x$ that satisfy $\sqrt[3]{20x+\sqrt[3]{20x+13}}=13$.
2001 Swedish Mathematical Competition, 2
Show that $\sqrt[3]{\sqrt{52} + 5}- \sqrt[3]{\sqrt{52}- 5}$ is rational.
2021 Peru PAGMO TST, P6
Find all functions $f:\mathbb{R}\to \mathbb{R}$ such that for any real numbers $x$ and $y$ the following is true:
$$x^2+y^2+2f(xy)=f(x+y)(f(x)+f(y))$$
1969 IMO Longlists, 65
$(USS 2)$ Prove that for $a > b^2,$ the identity ${\sqrt{a-b\sqrt{a+b\sqrt{a-b\sqrt{a+\cdots}}}}=\sqrt{a-\frac{3}{4}b^2}-\frac{1}{2}b}$
Azerbaijan Al-Khwarizmi IJMO TST 2025, 2
For $a,b,c$ positive real numbers satisfying $a^2+b^2+c^2 \geq 3$,show that:
$\sqrt[3]{\frac{a^3+b^3+c^3}{3}}+\frac{a+b+c}{9} \geq \frac{4}{3}$.
2007 German National Olympiad, 6
For two real numbers a,b the equation: $x^{4}-ax^{3}+6x^{2}-bx+1=0$ has four solutions (not necessarily distinct). Prove that $a^{2}+b^{2}\ge{32}$
2007 Bulgarian Autumn Math Competition, Problem 9.2
Let $a$, $b$, $c$ be real numbers, such that $a+b+c=0$ and $a^4+b^4+c^4=50$. Determine the value of $ab+bc+ca$.
2020 AMC 12/AHSME, 22
What is the maximum value of $\frac{(2^t-3t)t}{4^t}$ for real values of $t?$
$\textbf{(A)}\ \frac{1}{16} \qquad\textbf{(B)}\ \frac{1}{15} \qquad\textbf{(C)}\ \frac{1}{12} \qquad\textbf{(D)}\ \frac{1}{10} \qquad\textbf{(E)}\ \frac{1}{9}$
2022 Thailand TSTST, 3
Let $S$ be the set of the positive integers greater than $1$, and let $n$ be from $S$. Does there exist a function $f$ from $S$ to itself such that for all pairwise distinct positive integers $a_1, a_2,...,a_n$ from $S$, we have $f(a_1)f(a_2)...f(a_n)=f(a_1^na_2^n...a_n^n)$?
2011 Stars Of Mathematics, 1
For positive real numbers $a,b,c,d$, with $abcd = 1$, determine all values taken by the expression
\[\frac {1+a+ab} {1+a+ab+abc} + \frac {1+b+bc} {1+b+bc+bcd} +\frac {1+c+cd} {1+c+cd+cda} +\frac {1+d+da} {1+d+da+dab}.\]
(Dan Schwarz)