This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2024 All-Russian Olympiad, 3

Let $n$ be a positive integer. Ilya and Sasha both choose a pair of different polynomials of degree $n$ with real coefficients. Lenya knows $n$, his goal is to find out whether Ilya and Sasha have the same pair of polynomials. Lenya selects a set of $k$ real numbers $x_1<x_2<\dots<x_k$ and reports these numbers. Then Ilya fills out a $2 \times k$ table: For each $i=1,2,\dots,k$ he writes a pair of numbers $P(x_i),Q(x_i)$ (in any of the two possible orders) intwo the two cells of the $i$-th column, where $P$ and $Q$ are his polynomials. Sasha fills out a similar table. What is the minimal $k$ such that Lenya can surely achieve the goal by looking at the tables? [i]Proposed by L. Shatunov[/i]

2015 Caucasus Mathematical Olympiad, 1

Tags: algebra , equation
Find the roots of the equation $(x-a)(x-b)=(x-c)(x-d)$, if you know that $a+d=b+c=2015$ and $a \ne c$ (numbers $a, b, c, d$ are not given).

2013 QEDMO 13th or 12th, 10

Let $p$ be a prime number gretater then $3$. What is the number of pairs $(m, n)$ of integers with $0 <m <n <p$, for which the polynomial $x^p + px^n + px^m +1$ is not a product of two non-constant polynomials with integer coefficients can be written?

2018 PUMaC Algebra A, 4

Tags: algebra
Suppose real numbers $a, b, c, d$ satisfy $a + b + c + d = 17$ and $ab + bc + cd + da = 46$. If the minimum possible value of $a^2 + b^2 + c^2 + d^2$ can be expressed as a rational number $\frac{p}{q}$ in simplest form, find $p + q$.

2024 ELMO Shortlist, A7

For some positive integer $n,$ Elmo writes down the equation \[x_1+x_2+\dots+x_n=x_1+x_2+\dots+x_n.\] Elmo inserts at least one $f$ to the left side of the equation and adds parentheses to create a valid functional equation. For example, if $n=3,$ Elmo could have created the equation \[f(x_1+f(f(x_2)+x_3))=x_1+x_2+x_3.\] Cookie Monster comes up with a function $f: \mathbb{Q}\to\mathbb{Q}$ which is a solution to Elmo's functional equation. (In other words, Elmo's equation is satisfied for all choices of $x_1,\dots,x_n\in\mathbb{Q})$. Is it possible that there is no integer $k$ (possibly depending on $f$) such that $f^k(x)=x$ for all $x$? [i]Srinivas Arun[/i]

2024 CCA Math Bonanza, T1

Real numbers $(x,y)$ satisfy the following equations: $$(x + 3)(y + 1) + y^2 = 3y$$ $$-x + x(y + x) = - 2x - 3.$$ Find the sum of all possible values of $x$. [i]Team #1[/i]

Maryland University HSMC part II, 1999

[b]p1.[/b] Twelve tables are set up in a row for a Millenium party. You want to put $2000$ cupcakes on the tables so that the numbers of cupcakes on adjacent tables always differ by one (for example, if the $5$th table has $20$ cupcakes, then the $4$th table has either $19$ or $21$ cupcakes, and the $6$th table has either $19$ or $21$ cupcakes). a) Find a way to do this. b) Suppose a Y2K bug eats one of the cupcakes, so you have only $1999$ cupcakes. Show that it is impossible to arrange the cupcakes on the tables according to the above conditions. [b]p2.[/b] Let $P$ and $Q$ lie on the hypotenuse $AB$ of the right triangle $CAB$ so that $|AP|=|PQ|=|QB|=|AB|/3$. Suppose that $|CP|^2+|CQ|^2=5$. Prove that $|AB|$ has the same value for all such triangles, and find that value. Note: $|XY|$ denotes the length of the segment $XY$. [b]p3.[/b] Let $P$ be a polynomial with integer coefficients and let $a, b, c$ be integers. Suppose $P(a)=b$, $P(b)=c$, and $P(c)=a$. Prove that $a=b=c$. [b]p4.[/b] A lattice point is a point $(x,y)$ in the plane for which both $x$ and $y$ are integers. Each lattice point is painted with one of $1999$ available colors. Prove that there is a rectangle (of nonzero height and width) whose corners are lattice points of the same color. [b]p5.[/b] A $1999$-by-$1999$ chocolate bar has vertical and horizontal grooves which divide it into $1999^2$ one-by-one squares. Caesar and Brutus are playing the following game with the chocolate bar: A move consists of a player picking up one chocolate rectangle; breaking it along a groove into two smaller rectangles; and then either putting both rectangles down or eating one piece and putting the other piece down. The players move alternately. The one who cannot make a move at his turn (because there are only one-by-one squares left) loses. Caesar starts. Which player has a winning strategy? Describe a winning strategy for that player. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 JBMO Shortlist, A7

Let $A$ be a set of positive integers satisfying the following : $a.)$ If $n \in A$ , then $n \le 2018$. $b.)$ If $S \subset A$ such that $|S|=3$, then there exists $m,n \in S$ such that $|n-m| \ge \sqrt{n}+\sqrt{m}$ What is the maximum cardinality of $A$ ?

1949 Miklós Schweitzer, 5

Let $ f(x)$ be a polynomial of second degree the roots of which are contained in the interval $ [\minus{}1,\plus{}1]$ and let there be a point $ x_0\in [\minus{}1.\plus{}1]$ such that $ |f(x_0)|\equal{}1$. Prove that for every $ \alpha \in [0,1]$, there exists a $ \zeta \in [\minus{}1,\plus{}1]$ such that $ |f'(\zeta)|\equal{}\alpha$ and that this statement is not true if $ \alpha>1$.

1995 Poland - Second Round, 4

Positive real numbers $x_1,x_2,...,x_n$ satisfy the condition $\sum_{i=1}^n x_i \le \sum_{i=1}^n x_i ^2$ . Prove the inequality $\sum_{i=1}^n x_i^t \le \sum_{i=1}^n x_i ^{t+1}$ for all real numbers $t > 1$.

2016 IMO Shortlist, A7

Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that $f(0)\neq 0$ and for all $x,y\in\mathbb{R}$, \[ f(x+y)^2 = 2f(x)f(y) + \max \left\{ f(x^2+y^2), f(x^2)+f(y^2) \right\}. \]

2021 Tuymaada Olympiad, 5

Sines of three acute angles form an arithmetic progression, while the cosines of these angles form a geometric progression. Prove that all three angles are equal.

2006 France Team Selection Test, 2

Let $a,b,c$ be three positive real numbers such that $abc=1$. Show that: \[ \displaystyle \frac{a}{(a+1)(b+1)}+\frac{b}{(b+1)(c+1)}+ \frac{c}{(c+1)(a+1)} \geq \frac{3}{4}. \] When is there equality?

2007 AIME Problems, 14

Let $f(x)$ be a polynomial with real coefficients such that $f(0) = 1,$ $f(2)+f(3)=125,$ and for all $x$, $f(x)f(2x^{2})=f(2x^{3}+x).$ Find $f(5).$

2014 Polish MO Finals, 2

Tags: algebra
Let $k\ge 2$, $n\ge 1$, $a_1, a_2,\dots, a_k$ and $b_1, b_2, \dots, b_n$ be integers such that $1<a_1<a_2<\dots <a_k<b_1<b_2<\dots <b_n$. Prove that if $a_1+a_2+\dots +a_k>b_1+b_2+\dots + b_n$, then $a_1\cdot a_2\cdot \ldots \cdot a_k>b_1\cdot b_2 \cdot \ldots \cdot b_n$.

2006 Grigore Moisil Urziceni, 2

Let be a bipartition of the set formed by the first $ 13 $ nonnegative numbers. Prove that at least one of these two subsets that form this partition contains an arithmetic progression.

VI Soros Olympiad 1999 - 2000 (Russia), 10.2

Solve the equation $$\frac{\pi-2}{2} + \frac{2}{1+\sin (2\sqrt{x})}+arccos(x^3-8x-1)=tg^2\sqrt{x}- \sqrt{x^4+x^3-5x^2-8x-24}$$

2022 Iran Team Selection Test, 7

Suppose that $n$ is a positive integer number. Consider a regular polygon with $2n$ sides such that one of its largest diagonals is parallel to the $x$-axis. Find the smallest integer $d$ such that there is a polynomial $P$ of degree $d$ whose graph intersects all sides of the polygon on points other than vertices. Proposed by Mohammad Ahmadi

2004 Putnam, A4

Show that for any positive integer $n$ there is an integer $N$ such that the product $x_1x_2\cdots x_n$ can be expressed identically in the form \[x_1x_2\cdots x_n=\sum_{i=1}^Nc_i(a_{i1}x_1+a_{i2}x_2+\cdots +a_{in}x_n)^n\] where the $c_i$ are rational numbers and each $a_{ij}$ is one of the numbers, $-1,0,1.$

2024 Dutch BxMO/EGMO TST, IMO TSTST, 2

Tags: algebra
We define a sequence with $a_1=850$ and $$a_{n+1}=\frac{a_n^2}{a_n-1}$$ for $n\geq 1$. Find all values of $n$ for which $\lfloor a_n\rfloor =2024$.

2009 QEDMO 6th, 12

Find all functions $f: R\to R$, which satisfy the equation $f (xy + f (x)) = xf (y) + f (x)$.

2024 Mathematical Talent Reward Programme, 6

Tags: algebra
Find the maximum possible length of a sequence consisting of non-zero integers, in which the sum of any seven consecutive terms is positive and that of any eleven consecutive terms is negative.

2008 Middle European Mathematical Olympiad, 1

Let $ (a_n)^{\infty}_{n\equal{}1}$ be a sequence of integers with $ a_{n} < a_{n\plus{}1}, \quad \forall n \geq 1.$ For all quadruple $ (i,j,k,l)$ of indices such that $ 1 \leq i < j \leq k < l$ and $ i \plus{} l \equal{} j \plus{} k$ we have the inequality $ a_{i} \plus{} a_{l} > a_{j} \plus{} a_{k}.$ Determine the least possible value of $ a_{2008}.$

2015 Mathematical Talent Reward Programme, SAQ: P 4

Find all real numbers $x_{1}, x_{2}, \cdots, x_{n}$ satisfying,$$\sqrt{x_{1}-1^{2}}+2 \sqrt{x_{2}-2^{2}}+\cdots+n \sqrt{x_{n}-n^{2}}=\frac{1}{2}\left(x_{1}+x_{2}+\cdots+x_{n}\right)$$

2011 Hanoi Open Mathematics Competitions, 4

Among the five statements on real numbers below, how many of them are correct? "If $a < b < 0$ then $a < b^2$" , "If $0 < a < b$ then $a < b^2$", "If $a^3 < b^3$ then $a < b$", "If $a^2 < b^2$ then $a < b$", "If $|a| < |b|$ then $a < b$", (A) $0$, (B) $1$, (C) $2$, (D) $3$, (E) $4$