Found problems: 15925
2003 Junior Balkan Team Selection Tests - Romania, 1
Let $a, b, c$ be positive real numbers with $abc = 1$. Prove that $1 + \frac{3}{a+b+c}\ge \frac{6}{ab+bc+ca}$
1987 Czech and Slovak Olympiad III A, 3
Let $f:(0,\infty)\to(0,\infty)$ be a function satisfying $f\bigl(xf(y)\bigr)+f\bigl(yf(x)\bigr)=2xy$ for all $x,y>0$. Show that $f(x) = x$ for all positive $x$.
TNO 2023 Senior, 5
Find all triples of integers \( (x, y, z) \) such that
\[
x - yz = 11
\]
\[
xz + y = 13
\]
2008 China Team Selection Test, 6
Find the maximal constant $ M$, such that for arbitrary integer $ n\geq 3,$ there exist two sequences of positive real number $ a_{1},a_{2},\cdots,a_{n},$ and $ b_{1},b_{2},\cdots,b_{n},$ satisfying
(1):$ \sum_{k \equal{} 1}^{n}b_{k} \equal{} 1,2b_{k}\geq b_{k \minus{} 1} \plus{} b_{k \plus{} 1},k \equal{} 2,3,\cdots,n \minus{} 1;$
(2):$ a_{k}^2\leq 1 \plus{} \sum_{i \equal{} 1}^{k}a_{i}b_{i},k \equal{} 1,2,3,\cdots,n, a_{n}\equiv M$.
1998 Harvard-MIT Mathematics Tournament, 9
Suppose $f(x)$ is a rational function such that $3f\left(\dfrac{1}{x}\right)+\dfrac{2f(x)}{x}=x^2$ for $x\neq 0$. Find $f(-2)$.
LMT Speed Rounds, 2014
[b]p1.[/b] What is $6\times 7 + 4 \times 7 + 6\times 3 + 4\times 3$?
[b]p2.[/b] How many integers $n$ have exactly $\sqrt{n}$ factors?
[b]p3.[/b] A triangle has distinct angles $3x+10$, $2x+20$, and $x+30$. What is the value of $x$?
[b]p4.[/b] If $4$ people of the Math Club are randomly chosen to be captains, and Henry is one of the $30$ people eligible to be chosen, what is the probability that he is not chosen to be captain?
[b]p5.[/b] $a, b, c, d$ is an arithmetic sequence with difference $x$ such that $a, c, d$ is a geometric sequence. If $b$ is $12$, what is $x$? (Note: the difference of an aritmetic sequence can be positive or negative, but not $0$)
[b]p6.[/b] What is the smallest positive integer that contains only $0$s and $5$s that is a multiple of $24$.
[b]p7.[/b] If $ABC$ is a triangle with side lengths $13$, $14$, and $15$, what is the area of the triangle made by connecting the points at the midpoints of its sides?
[b]p8.[/b] How many ways are there to order the numbers $1,2,3,4,5,6,7,8$ such that $1$ and $8$ are not adjacent?
[b]p9.[/b] Find all ordered triples of nonnegative integers $(x, y, z)$ such that $x + y + z = xyz$.
[b]p10.[/b] Noah inscribes equilateral triangle $ABC$ with area $\sqrt3$ in a cricle. If $BR$ is a diameter of the circle, then what is the arc length of Noah's $ARC$?
[b]p11.[/b] Today, $4/12/14$, is a palindromic date, because the number without slashes $41214$ is a palindrome. What is the last palindromic date before the year $3000$?
[b]p12.[/b] Every other vertex of a regular hexagon is connected to form an equilateral triangle. What is the ratio of the area of the triangle to that of the hexagon?
[b]p13.[/b] How many ways are there to pick four cards from a deck, none of which are the same suit or number as another, if order is not important?
[b]p14.[/b] Find all functions $f$ from $R \to R$ such that $f(x + y) + f(x - y) = x^2 + y^2$.
[b]p15.[/b] What are the last four digits of $1(1!) + 2(2!) + 3(3!) + ... + 2013(2013!)$/
[b]p16.[/b] In how many distinct ways can a regular octagon be divided up into $6$ non-overlapping triangles?
[b]p17.[/b] Find the sum of the solutions to the equation $\frac{1}{x-3} + \frac{1}{x-5} + \frac{1}{x-7} + \frac{1}{x-9} = 2014$ .
[b]p18.[/b] How many integers $n$ have the property that $(n+1)(n+2)(n+3)(n+4)$ is a perfect square of an integer?
[b]p19.[/b] A quadrilateral is inscribed in a unit circle, and another one is circumscribed. What is the minimum possible area in between the two quadrilaterals?
[b]p20.[/b] In blindfolded solitary tic-tac-toe, a player starts with a blank $3$-by-$3$ tic-tac-toe board. On each turn, he randomly places an "$X$" in one of the open spaces on the board. The game ends when the player gets $3$ $X$s in a row, in a column, or in a diagonal as per normal tic-tac-toe rules. (Note that only $X$s are used, not $O$s). What fraction of games will run the maximum $7$ amount of moves?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2013 Kosovo National Mathematical Olympiad, 2
Math teacher wrote in a table a polynomial $P(x)$ with integer coefficients and he said:
"Today my daughter have a birthday.If in polynomial $P(x)$ we have $x=a$ where $a$ is the age of my daughter we have $P(a)=a$ and $P(0)=p$ where $p$ is a prime number such that $p>a$."
How old is the daughter of math teacher?
2005 India IMO Training Camp, 3
Consider a matrix of size $n\times n$ whose entries are real numbers of absolute value not exceeding $1$. The sum of all entries of the matrix is $0$. Let $n$ be an even positive integer. Determine the least number $C$ such that every such matrix necessarily has a row or a column with the sum of its entries not exceeding $C$ in absolute value.
[i]Proposed by Marcin Kuczma, Poland[/i]
2022 Canadian Junior Mathematical Olympiad, 3
If $ab+\sqrt{ab+1}+\sqrt{a^2+b}\sqrt{a+b^2}=0$, find the value of $b\sqrt{a^2+b}+a\sqrt{b^2+a}$
2021 Taiwan TST Round 1, 4
Let $n$ be a positive integer. For each $4n$-tuple of nonnegative real numbers $a_1,\ldots,a_{2n}$, $b_1,\ldots,b_{2n}$ that satisfy $\sum_{i=1}^{2n}a_i=\sum_{j=1}^{2n}b_j=n$, define the sets
\[A:=\left\{\sum_{j=1}^{2n}\frac{a_ib_j}{a_ib_j+1}:i\in\{1,\ldots,2n\} \textup{ s.t. }\sum_{j=1}^{2n}\frac{a_ib_j}{a_ib_j+1}\neq 0\right\},\]
\[B:=\left\{\sum_{i=1}^{2n}\frac{a_ib_j}{a_ib_j+1}:j\in\{1,\ldots,2n\} \textup{ s.t. }\sum_{i=1}^{2n}\frac{a_ib_j}{a_ib_j+1}\neq 0\right\}.\]
Let $m$ be the minimum element of $A\cup B$. Determine the maximum value of $m$ among those derived from all such $4n$-tuples $a_1,\ldots,a_{2n},b_1,\ldots,b_{2n}$.
[I]Proposed by usjl.[/i]
2007 India Regional Mathematical Olympiad, 3
Find all pairs $ (a, b)$ of real numbers such that whenever $ \alpha$ is a root of $ x^{2} \plus{} ax \plus{} b \equal{} 0$, $ \alpha^{2} \minus{} 2$ is also a root of the equation.
[b][Weightage 17/100][/b]
1966 IMO Longlists, 25
Prove that \[\tan 7 30^{\prime }=\sqrt{6}+\sqrt{2}-\sqrt{3}-2.\]
2014 IMAC Arhimede, 1
The function $f: N \to N_0$ is such that $f (2) = 0, f (3)> 0, f (6042) = 2014$ and $f (m + n)- f (m) - f (n) \in\{0,1\}$ for all $m,n \in N$. Determine $f (2014)$. $N_0=\{0,1,2,...\}$
2017 District Olympiad, 4
If $ a,b,c>0 $ and $ ab+bc+ca+abc=4, $ then $ \sqrt{ab} +\sqrt{bc} +\sqrt{ca} \le 3\le a+b+c. $
2000 Italy TST, 3
Given positive numbers $a_1$ and $b_1$, consider the sequences defined by
\[a_{n+1}=a_n+\frac{1}{b_n},\quad b_{n+1}=b_n+\frac{1}{a_n}\quad (n \ge 1)\]
Prove that $a_{25}+b_{25} \geq 10\sqrt{2}$.
1967 IMO, 5
Let $a_1,\ldots,a_8$ be reals, not all equal to zero. Let
\[ c_n = \sum^8_{k=1} a^n_k\]
for $n=1,2,3,\ldots$. Given that among the numbers of the sequence $(c_n)$, there are infinitely many equal to zero, determine all the values of $n$ for which $c_n = 0.$
2006 Bulgaria National Olympiad, 2
Let $f:\mathbb{R}^+\to\mathbb{R}^+$ be a function that satisfies for all $x>y>0$
\[f(x+y)-f(x-y)=4\sqrt{f(x)f(y)}\]
a) Prove that $f(2x)=4f(x)$ for all $x>0$;
b) Find all such functions.
[i]Nikolai Nikolov, Oleg Mushkarov [/i]
2002 Singapore Team Selection Test, 3
Find all functions $f : [0,\infty) \to [0,\infty)$ such that $f(f(x)) +f(x) = 12x$, for all $x \ge 0$.
2008 Mathcenter Contest, 6
Find all functions $f:\mathbb{R} \to \mathbb{R}$ satisfying the equation \[
f(x^2+y^2+2f(xy)) = (f(x+y))^2.
\] for all $x,y \in \mathbb{R}$.
2020 Bangladesh Mathematical Olympiad National, Problem 7
$f$ is a function on the set of complex numbers such that $f(z)=1/(z*)$, where $z*$ is the complex conjugate of $z$. $S$ is the set of complex numbers $z$ such that the real part of $f(z)$ lies between $1/2020$ and $1/2018$. If $S$ is treated as a subset of the complex plane, the area of $S$ can be expressed as $m× \pi$ where $m$ is an integer. What is the value of $m$?
1995 Italy TST, 3
A function $f:\mathbb{R}\rightarrow\mathbb{R}$ satisfies the conditions
\[\begin{cases}f(x+24)\le f(x)+24\\ f(x+77)\ge f(x)+77\end{cases}\quad\text{for all}\ x\in\mathbb{R}\]
Prove that $f(x+1)=f(x)+1$ for all real $x$.
2024-IMOC, A2
Given integer $n \geq 3$ and $x_1$, $x_2$, …, $x_n$ be $n$ real numbers satisfying $|x_1|+|x_2|+…+|x_n|=1$. Find the minimum of
\[|x_1+x_2|+|x_2+x_3|+…+|x_{n-1}+x_n|+|x_n+x_1|.\]
[i]Proposed by snap7822[/i]
2018 MOAA, 2
If $x > 0$ and $x^2 +\frac{1}{x^2}= 14$, find $x^5 +\frac{1}{x^5}$.
1990 Bundeswettbewerb Mathematik, 2
The sequence $a_0,a_1,a_2,...$ is defined by $a_0 = 0, a_1 = a_2 = 1$ and $a_{n+2} +a_{n-1} = 2(a_{n+1} +a_n)$ for all $n \in N$. Show that all $a_n$ are perfect squares .
2021 Science ON all problems, 1
Find all sequences of positive integers $(a_n)_{n\ge 1}$ which satisfy
$$a_{n+2}(a_{n+1}-1)=a_n(a_{n+1}+1)$$
for all $n\in \mathbb{Z}_{\ge 1}$.
[i](Bogdan Blaga)[/i]