This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2000 Irish Math Olympiad, 5

Consider all parabolas of the form $ y\equal{}x^2\plus{}2px\plus{}q$ for $ p,q \in \mathbb{R}$ which intersect the coordinate axes in three distinct points. For such $ p,q$, denote by $ C_{p,q}$ the circle through these three intersection points. Prove that all circles $ C_{p,q}$ have a point in common.

2019 APMO, 1

Let $\mathbb{Z}^+$ be the set of positive integers. Determine all functions $f : \mathbb{Z}^+\to\mathbb{Z}^+$ such that $a^2+f(a)f(b)$ is divisible by $f(a)+b$ for all positive integers $a,b$.

Maryland University HSMC part II, 2017

[b]p1[/b]. Consider the following four statements referring to themselves: 1. At least one of these statements is true. 2. At least two of these statements are false. 3. At least three of these statements are true. 4. All four of these statements are false. Determine which statements are true and which are false. Justify your answer. [b]p2.[/b] Let $f(x) = a_{2017}x^{2017} + a_{2016}x^{2016} + ... + a_1x + a_0$ where the coefficients $a_0, a_1, ... , a_{2017}$ have not yet been determined. Alice and Bob play the following game: $\bullet$ Alice and Bob alternate choosing nonzero integer values for the coefficients, with Alice going first. (For example, Alice’s first move could be to set $a_{18}$ to $-3$.) $\bullet$ After all of the coefficients have been chosen: - If f(x) has an integer root then Alice wins. - If f(x) does not have an integer root then Bob wins. Determine which player has a winning strategy and what the strategy is. Make sure to justify your answer. [b]p3.[/b] Suppose that a circle can be inscribed in a polygon $P$ with $2017$ equal sides. Prove that $P$ is a regular polygon; that is, all angles of $P$ are also equal. [b]p4.[/b] A $3 \times 3 \times 3$ cube of cheese is sliced into twenty-seven $ 1 \times 1 \times 1$ blocks. A mouse starts anywhere on the outside and eats one of the $1\times 1\times 1$ cubes. He then moves to an adjacent cube (in any direction), eats that cube, and continues until he has eaten all $27$ cubes. (Two cubes are considered adjacent if they share a face.) Prove that no matter what strategy the mouse uses, he cannot eat the middle cube last. [Note: One should neglect gravity – intermediate configurations don’t collapse.] p5. Suppose that a constant $c > 0$ and an infinite sequence of real numbers $x_0, x_1, x_2, ...$ satisfy $x_{k+1} =\frac{x_k + 1}{1 - cx_k}$ for all $k \ge 0$. Prove that the sequence $x_0, x_1, x_2, ....$ contains infinitely many positive terms and also contains infinitely many negative terms. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020/2021 Tournament of Towns, P2

Baron Munchausen presented a new theorem: if a polynomial $x^{n} - ax^{n-1} + bx^{n-2}+ \dots$ has $n$ positive integer roots then there exist $a$ lines in the plane such that they have exactly $b$ intersection points. Is the baron’s theorem true?

2022 Bulgarian Autumn Math Competition, Problem 11.1

Tags: algebra
Find all real numbers $q$, such that for all real $p \geq 0$, the equation $x^2-2px+q^2+q-2=0$ has at least one real root in $(-1;0)$.

2016 Postal Coaching, 2

Determine all functions $f : \mathbb R \to \mathbb R$ such that $$f(f(x)- f(y)) = f(f(x)) - 2x^2f(y) + f\left(y^2\right),$$ for all reals $x, y$.

2007 IberoAmerican Olympiad For University Students, 5

Determine all pairs of polynomials $f,g\in\mathbb{C}[x]$ with complex coefficients such that the following equalities hold for all $x\in\mathbb{C}$: $f(f(x))-g(g(x))=1+i$ $f(g(x))-g(f(x))=1-i$

1980 IMO Longlists, 5

In a rectangular coordinate system we call a horizontal line parallel to the $x$ -axis triangular if it intersects the curve with equation \[y = x^4 + px^3 + qx^2 + rx + s\] in the points $A,B,C$ and $D$ (from left to right) such that the segments $AB, AC$ and $AD$ are the sides of a triangle. Prove that the lines parallel to the $x$ - axis intersecting the curve in four distinct points are all triangular or none of them is triangular.

2024 Belarusian National Olympiad, 10.3

Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that for every $x,y \in \mathbb{R}$ the following equation holds:$$1+f(xy)=f(x+f(y))+(y-1)f(x-1)$$ [i]M. Zorka[/i]

1989 All Soviet Union Mathematical Olympiad, 487

$7$ boys each went to a shop $3$ times. Each pair met at the shop. Show that $3$ must have been in the shop at the same time.

2000 Portugal MO, 1

Consider the following table where initially all squares contain zeros: $ \begin{tabular}{ | l | c | r| } \hline 0 & 0 & 0 \\ \hline 0 & 0 & 0 \\ \hline 0 & 0 & 0 \\ \hline \end{tabular} $ To change the table, the following operation is allowed: a $2 \times 2$ square formed by adjacent squares is chosen, and a unit is added to all its numbers. Complete the following table, knowing that it was obtained by a sequence of permitted operations $ \begin{tabular}{ | l | c | r| } \hline 14 & & \\ \hline 19 & 36 & \\ \hline & 16 & \\ \hline \end{tabular} $

2019 Saudi Arabia Pre-TST + Training Tests, 1.2

Let $P(x)$ be a polynomial of degree $n \ge 2$ with rational coefficients such that $P(x)$ has $n$ pairwise different real roots forming an arithmetic progression. Prove that among the roots of $P(x)$ there are two that are also the roots of some polynomial of degree $2$ with rational coefficients.

2008 Hanoi Open Mathematics Competitions, 5

Suppose $x, y, z, t$ are real numbers such that $\begin{cases} |x + y + z -t |\le 1 \\ |y + z + t - x|\le 1 \\ |z + t + x - y|\le 1 \\ |t + x + y - z|\le 1 \end{cases}$ Prove that $x^2 + y^2 + z^2 + t^2 \le 1$.

2016 Postal Coaching, 1

If the polynomials $f(x)$ and $g(x)$ are written on a blackboard then we can also write down the polynomials $f(x)\pm g(x), f(x)g(x), f(g(x))$ and $cf(x)$, where $c$ is an arbitrary real constant. The polynomials $x^3 - 3x^2 + 5$ and $x^2 - 4x$ are written on the blackboard. Can we write a nonzero polynomial of the form $x^n - 1$ after a finite number of steps? Justify your answer.

2006 Korea Junior Math Olympiad, 4

In the coordinate plane, de fine $M = \{(a, b),a,b \in Z\}$. A transformation $S$, which is de fined on $M$, sends $(a,b)$ to $(a + b, b)$. Transformation $T$, also de fined on $M$, sends $(a, b)$ to $(-b, a)$. Prove that for all $(a, b) \in M$, we can use $S,T$ denitely to map it to $(g,0)$.

1989 IMO Longlists, 39

Alice has two urns. Each urn contains four balls and on each ball a natural number is written. She draws one ball from each urn at random, notes the sum of the numbers written on them, and replaces the balls in the urns from which she took them. This she repeats a large number of times. Bill, on examining the numbers recorded, notices that the frequency with which each sum occurs is the same as if it were the sum of two natural numbers drawn at random from the range 1 to 4. What can he deduce about the numbers on the balls?

2017 May Olympiad, 2

Tags: algebra
Alice writes differents real numbers in the board, if $a,b,c$ are three numbers in this board, least one of this numbers $a + b, b + c, a + c$ also is a number in the board. What's the largest quantity of numbers written in the board???

2022 Princeton University Math Competition, 7

Tags: algebra
Pick $x, y, z$ to be real numbers satisfying $(-x+y+z)^2-\frac13 = 4(y-z)^2$, $(x-y+z)^2-\frac14 = 4(z-x)2$, and $(x+y-z)^2 -\frac15 = 4(x-y)^2$. If the value of $xy+yz +zx$ can be written as $\frac{p}{q}$ for relatively prime positive integers $p, q$, find $p + q$.

2019 AMC 10, 24

Let $p$, $q$, and $r$ be the distinct roots of the polynomial $x^3 - 22x^2 + 80x - 67$. It is given that there exist real numbers $A$, $B$, and $C$ such that \[\dfrac{1}{s^3 - 22s^2 + 80s - 67} = \dfrac{A}{s-p} + \dfrac{B}{s-q} + \frac{C}{s-r}\] for all $s\not\in\{p,q,r\}$. What is $\tfrac1A+\tfrac1B+\tfrac1C$? $\textbf{(A) }243\qquad\textbf{(B) }244\qquad\textbf{(C) }245\qquad\textbf{(D) }246\qquad\textbf{(E) } 247$

2010 Contests, 1

Find all triples $(a,b,c)$ of positive real numbers satisfying the system of equations \[ a\sqrt{b}-c \&= a,\qquad b\sqrt{c}-a \&= b,\qquad c\sqrt{a}-b \&= c. \]

1985 IMO Longlists, 33

A sequence of polynomials $P_m(x, y, z), m = 0, 1, 2, \cdots$, in $x, y$, and $z$ is defined by $P_0(x, y, z) = 1$ and by \[P_m(x, y, z) = (x + z)(y + z)P_{m-1}(x, y, z + 1) - z^2P_{m-1}(x, y, z)\] for $m > 0$. Prove that each $P_m(x, y, z)$ is symmetric, in other words, is unaltered by any permutation of $x, y, z.$

1998 Vietnam Team Selection Test, 1

Let $f(x)$ be a real function such that for each positive real $c$ there exist a polynomial $P(x)$ (maybe dependent on $c$) such that $| f(x) - P(x)| \leq c \cdot x^{1998}$ for all real $x$. Prove that $f$ is a real polynomial.

2003 Argentina National Olympiad, 2

On the blackboard are written the $2003$ integers from $1$ to $2003$. Lucas must delete $90$ numbers. Next, Mauro must choose $37$ from the numbers that remain written. If the $37$ numbers Mauro chooses form an arithmetic progression, Mauro wins. If not, Lucas wins. Decide if Lucas can choose the $90$ numbers he erases so that victory is assured.

1994 Tournament Of Towns, (438) 4

Prove that for all positive $a_1. a_2, ..., a_n$ the inequality $$\left( 1+\frac{a_1^2}{a_2}\right) \left( 1+\frac{a_2^2}{a_3}\right) ...\left( 1+\frac{a_n^2}{a_1}\right) \ge (1+a_1)(1+a_2)...(1+a_n)$$ holds. (LD Kurliandchik)

1989 USAMO, 3

Let $P(z)= z^n + c_1 z^{n-1} + c_2 z^{n-2} + \cdots + c_n$ be a polynomial in the complex variable $z$, with real coefficients $c_k$. Suppose that $|P(i)| < 1$. Prove that there exist real numbers $a$ and $b$ such that $P(a + bi) = 0$ and $(a^2 + b^2 + 1)^2 < 4 b^2 + 1$.