This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2011 District Olympiad, 3

Let $ f:\mathbb{R}\longrightarrow\mathbb{R} $ be a function with the property that $ (f\circ f) (x) =[x], $ for any real number $ x. $ Show that there exist two distinct real numbers $ a,b $ so that $ |f(a)-f(b)|\ge |a-b|. $ $ [] $ denotes the integer part.

EMCC Team Rounds, 2010

[b]p1.[/b] A very large lucky number $N$ consists of eighty-eight $8$s in a row. Find the remainder when this number $N$ is divided by $6$. [b]p2.[/b] If $3$ chickens can lay $9$ eggs in $4$ days, how many chickens does it take to lay $180$ eggs in $ 8$ days? [b]p3.[/b] Find the ordered pair $(x, y)$ of real numbers satisfying the conditions $x > y$, $x+y = 10$, and $xy = -119$. [b]p4.[/b] There is pair of similar triangles. One triangle has side lengths $4, 6$, and $9$. The other triangle has side lengths $ 8$, $12$ and $x$. Find the sum of two possible values of $x$. [b]p5.[/b] If $x^2 +\frac{1}{x^2} = 3$, there are two possible values of $x +\frac{1}{x}$. What is the smaller of the two values? [b]p6.[/b] Three flavors (chocolate strawberry, vanilla) of ice cream are sold at Brian’s ice cream shop. Brian’s friend Zerg gets a coupon for $10$ free scoops of ice cream. If the coupon requires Zerg to choose an even number of scoops of each flavor of ice cream, how many ways can he choose his ice cream scoops? (For example, he could have $6$ scoops of vanilla and $4$ scoops of chocolate. The order in which Zerg eats the scoops does not matter.) [b]p7.[/b] David decides he wants to join the West African Drumming Ensemble, and thus he goes to the store and buys three large cylindrical drums. In order to ensure none of the drums drop on the way home, he ties a rope around all of the drums at their mid sections so that each drum is next to the other two. Suppose that each drum has a diameter of $3.5$ feet. David needs $m$ feet of rope. Given that $m = a\pi + b$, where $a$ and $b$ are rational numbers, find sum $a + b$. [b]p8.[/b] Segment $AB$ is the diameter of a semicircle of radius $24$. A beam of light is shot from a point $12\sqrt3$ from the center of the semicircle, and perpendicular to $AB$. How many times does it reflect off the semicircle before hitting $AB$ again? [b]p9.[/b] A cube is inscribed in a sphere of radius $ 8$. A smaller sphere is inscribed in the same sphere such that it is externally tangent to one face of the cube and internally tangent to the larger sphere. The maximum value of the ratio of the volume of the smaller sphere to the volume of the larger sphere can be written in the form $\frac{a-\sqrt{b}}{36}$ , where $a$ and $b$ are positive integers. Find the product $ab$. [b]p10.[/b] How many ordered pairs $(x, y)$ of integers are there such that $2xy + x + y = 52$? [b]p11.[/b] Three musketeers looted a caravan and walked off with a chest full of coins. During the night, the first musketeer divided the coins into three equal piles, with one coin left over. He threw it into the ocean and took one of the piles for himself, then went back to sleep. The second musketeer woke up an hour later. He divided the remaining coins into three equal piles, and threw out the one coin that was left over. He took one of the piles and went back to sleep. The third musketeer woke up and divided the remaining coins into three equal piles, threw out the extra coin, and took one pile for himself. The next morning, the three musketeers gathered around to divide the coins into three equal piles. Strangely enough, they had one coin left over this time as well. What is the minimum number of coins that were originally in the chest? [b]p12.[/b] The diagram shows a rectangle that has been divided into ten squares of different sizes. The smallest square is $2 \times 2$ (marked with *). What is the area of the rectangle (which looks rather like a square itself)? [img]https://cdn.artofproblemsolving.com/attachments/4/a/7b8ebc1a9e3808096539154f0107f3e23d168b.png[/img] [b]p13.[/b] Let $A = (3, 2)$, $B = (0, 1)$, and $P$ be on the line $x + y = 0$. What is the minimum possible value of $AP + BP$? [b]p14.[/b] Mr. Mustafa the number man got a $6 \times x$ rectangular chess board for his birthday. Because he was bored, he wrote the numbers $1$ to $6x$ starting in the upper left corner and moving across row by row (so the number $x + 1$ is in the $2$nd row, $1$st column). Then, he wrote the same numbers starting in the upper left corner and moving down each column (so the number $7$ appears in the $1$st row, $2$nd column). He then added up the two numbers in each of the cells and found that some of the sums were repeated. Given that $x$ is less than or equal to $100$, how many possibilities are there for $x$? [b]p15.[/b] Six congruent equilateral triangles are arranged in the plane so that every triangle shares at least one whole edge with some other triangle. Find the number of distinct arrangements. (Two arrangements are considered the same if one can be rotated and/or reflected onto another.) PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 Poland - Second Round, 2

Let $n$ be a positive integer. Determine the number of sequences $a_0, a_1, \ldots, a_n$ with terms in the set $\{0,1,2,3\}$ such that $$n=a_0+2a_1+2^2a_2+\ldots+2^na_n.$$

2000 Belarus Team Selection Test, 4.3

Prove that for every real number $M$ there exists an infinite arithmetic progression such that: - each term is a positive integer and the common difference is not divisible by 10 - the sum of the digits of each term (in decimal representation) exceeds $M$.

1991 Greece National Olympiad, 1

Prove that there is no function $f: \mathbb{Z}\to\mathbb{Z}$ such that $f(f(x))=x+1$, for all $x\in\mathbb{Z}$.

1951 Moscow Mathematical Olympiad, 190

Tags: algebra , compare
Which number is greater: $\frac{2.00 000 000 004}{(1.00 000 000 004)^2 + 2.00 000 000 004}$ or $\frac{2.00 000 000 002}{(1.00 000 000 002)^2 + 2.00 000 000 002}$ ?

PEN Q Problems, 12

Prove that if the integers $a_{1}$, $a_{2}$, $\cdots$, $a_{n}$ are all distinct, then the polynomial \[(x-a_{1})^{2}(x-a_{2})^{2}\cdots (x-a_{n})^{2}+1\] cannot be expressed as the product of two nonconstant polynomials with integer coefficients.

1968 IMO Shortlist, 16

A polynomial $p(x) = a_0x^k + a_1x^{k-1} + \cdots + a_k$ with integer coefficients is said to be divisible by an integer $m$ if $p(x)$ is divisible by m for all integers $x$. Prove that if $p(x)$ is divisible by $m$, then $k!a_0$ is also divisible by $m$. Also prove that if $a_0, k,m$ are non-negative integers for which $k!a_0$ is divisible by $m$, there exists a polynomial $p(x) = a_0x^k+\cdots+ a_k$ divisible by $m.$

Russian TST 2019, P1

Tags: sequence , algebra
Let $a_0, a_1, \ldots , a_n$ and $b_0, b_1, \ldots , b_n$ be sequences of real numbers such that $a_0 = b_0 \geqslant 0$, $a_n = b_n > 0$ and \[a_i=\sqrt{\frac{a_{i+1}+a_{i-1}}{2}},\quad b_i=\sqrt{\frac{b_{i+1}+b_{i-1}}{2}},\]for all $i=1,\ldots,n-1$. Prove that $a_1 = b_1$.

2012 Federal Competition For Advanced Students, Part 2, 1

Given a sequence $<a_1,a_2,a_3,\cdots >$ of real numbers, we define $m_n$ as the arithmetic mean of the numbers $a_1$ to $a_n$ for $n\in\mathbb{Z}^+$. If there is a real number $C$, such that \[ (i-j)m_k+(j-k)m_i+(k-i)m_j=C\] for every triple $(i,j,k)$ of distinct positive integers, prove that the sequence $<a_1,a_2,a_3,\cdots >$ is an arithmetic progression.

2021 CHMMC Winter (2021-22), 3

Tags: algebra
Suppose $a, b, c$ are complex numbers with $a + b + c = 0$, $a^2 + b^2 + c^2 = 0$, and $|a|,|b|,|c| \le 5$. Suppose further at least one of $a, b, c$ have real and imaginary parts that are both integers. Find the number of possibilities for such ordered triples $(a, b, c)$.

1995 VJIMC, Problem 2

Let $f=f_0+f_1z+f_2z^2+\ldots+f_{2n}z^{2n}$ and $f_k=f_{2n-k}$ for each $k$. Prove that $f(z)=z^ng(z+z^{-1})$, where $g$ is a polynomial of degree $n$.

2005 IberoAmerican Olympiad For University Students, 7

Prove that for any integers $n,p$, $0<n\leq p$, all the roots of the polynomial below are real: \[P_{n,p}(x)=\sum_{j=0}^n {p\choose j}{p\choose {n-j}}x^j\]

2000 Harvard-MIT Mathematics Tournament, 15

Tags: calculus , algebra
$$\lim_{n \to \infty} nr\sqrt[2]{1-\cos \frac{2\pi}{n}}=?$$

2004 AIME Problems, 12

Let $ABCD$ be an isosceles trapezoid, whose dimensions are $AB = 6$, $BC=5=DA$, and $CD=4$. Draw circles of radius 3 centered at $A$ and $B$, and circles of radius 2 centered at $C$ and $D$. A circle contained within the trapezoid is tangent to all four of these circles. Its radius is $\frac{-k+m\sqrt{n}}p$, where $k$, $m$, $n$, and $p$ are positive integers, $n$ is not divisible by the square of any prime, and $k$ and $p$ are relatively prime. Find $k+m+n+p$.

2023 Pan-African, 5

Tags: algebra
Let $a, b$ be reals with $a \neq 0$ and let $$P(x)=ax^4-4ax^3+(5a+b)x^2-4bx+b.$$ Show that all roots of $P(x)$ are real and positive if and only if $a=b$.

1975 Spain Mathematical Olympiad, 4

Prove that if the product of $n$ real and positive numbers is equal to $1$, its sum is greater than or equal to $n$.

1986 Traian Lălescu, 2.1

Consider the numbers $ a_n=1-\binom{n}{3} +\binom{n}{6} -\cdots, b_n= -\binom{n}{1} +\binom{n}{4}-\binom{n}{7} +\cdots $ and $ c_n=\binom{n}{2} -\binom{n}{5} +\binom{n}{8} -\cdots , $ for a natural number $ n\ge 2. $ Prove that $$ a_n^2+b_n^2+c_n^2-a_nb_n-b_nc_n-c_na_n =3^{n-1}. $$

1967 IMO Longlists, 50

The function $\varphi(x,y,z)$ defined for all triples $(x,y,z)$ of real numbers, is such that there are two functions $f$ and $g$ defined for all pairs of real numbers, such that \[\varphi(x,y,z) = f(x+y,z) = g(x,y+z)\] for all real numbers $x,y$ and $z.$ Show that there is a function $h$ of one real variable, such that \[\varphi(x,y,z) = h(x+y+z)\] for all real numbers $x,y$ and $z.$

2011 Saudi Arabia IMO TST, 3

Find all functions $f : R \to R$ such that $$2f(x) =f(x+y)+f(x+2y)$$, for all $x \in R$ and for all $y \ge 0$.

2002 Czech-Polish-Slovak Match, 3

Tags: function , algebra
Let $S = \{1, 2, \cdots , n\}, n \in N$. Find the number of functions $f : S \to S$ with the property that $x + f(f(f(f(x)))) = n + 1$ for all $x \in S$?

2008 239 Open Mathematical Olympiad, 2

For all positive numbers $a, b, c$ satisfying $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1$, prove that: $$ \frac{a}{a+bc} + \frac{b}{b+ca} + \frac{c}{c+ab} \geq \frac{3}{4} .$$

1999 Abels Math Contest (Norwegian MO), 1b

If $a,b,c,d,e$ are real numbers, prove the inequality $a^2 +b^2 +c^2 +d^2+e^2 \ge a(b+c+d+e)$.

2020 OMpD, 1

Let $a, b, c$ be real numbers such that $a + b + c = 0$. Given that $a^3 + b^3 + c^3 \neq 0$, $a^2 + b^2 + c^2 \neq 0$, determine all possible values for: $$\frac{a^5 + b^5 + c^5}{(a^3 + b^3 + c^3)(a^2 + b^2 + c^2)}$$

LMT Guts Rounds, 2019 F

[u]Round 1[/u] [b]p1.[/b] A positive integer is said to be transcendent if it leaves a remainder of $1$ when divided by $2$. Find the $1010$th smallest positive integer that is transcendent. [b]p2.[/b] The two diagonals of a square are drawn, forming four triangles. Determine, in degrees, the sum of the interior angle measures in all four triangles. [b]p3.[/b] Janabel multiplied $2$ two-digit numbers together and the result was a four digit number. If the thousands digit was nine and hundreds digit was seven, what was the tens digit? [u]Round 2[/u] [b]p4.[/b] Two friends, Arthur and Brandon, are comparing their ages. Arthur notes that $10$ years ago, his age was a third of Brandon’s current age. Brandon points out that in $12$ years, his age will be double of Arthur’s current age. How old is Arthur now? [b]p5.[/b] A farmer makes the observation that gathering his chickens into groups of $2$ leaves $1$ chicken left over, groups of $3$ leaves $2$ chickens left over, and groups of $5$ leaves $4$ chickens left over. Find the smallest possible number of chickens that the farmer could have. [b]p6.[/b] Charles has a bookshelf with $3$ layers and $10$ indistinguishable books to arrange. If each layer must hold less books than the layer below it and a layer cannot be empty, how many ways are there for Charles to arrange his $10$ books? [u]Round 3[/u] [b]p7.[/b] Determine the number of factors of $2^{2019}$. [b]p8.[/b] The points $A$, $B$, $C$, and $D$ lie along a line in that order. It is given that $\overline{AB} : \overline{CD} = 1 : 7$ and $\overline{AC} : \overline{BD} = 2 : 5$. If $BC = 3$, find $AD$. [b]p9.[/b] A positive integer $n$ is equal to one-third the sum of the first $n$ positive integers. Find $n$. [u]Round 4[/u] [b]p10.[/b] Let the numbers $a,b,c$, and $d$ be in arithmetic progression. If $a +2b +3c +4d = 5$ and $a =\frac12$ , find $a +b +c +d$. [b]p11.[/b] Ten people playing brawl stars are split into five duos of $2$. Determine the probability that Jeff and Ephramare paired up. [b]p12.[/b] Define a sequence recursively by $F_0 = 0$, $F_1 = 1$, and for all $n\ge 2$, $$F_n = \left \lceil \frac{F_{n-1}+F_{n-2}}{2} \right \rceil +1,$$ where $\lceil r \rceil$ denotes the least integer greater than or equal to $r$ . Find $F_{2019}$. PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h3166019p28809679]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3166115p28810631]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].